Hard tissues make up the vast majority of teeth and are mineralized from the surrounding matrix. If the development of tooth germ is affected during mineralization, hypoplasia of the tooth tissue can occur. To better understand the mechanisms mediating hypoplasia, we need to first study normal development. Using a rodent model, we highlight the transcriptomic changes that occur from the differentiation to secretion stages of mandibular molar germs. The tooth germ was dissected from rats at postnatal day 1.5 or 3.5 for high-throughput sequencing. Combining transcriptome analysis and DNA methylation, we identified 590 differentially expressed genes (436 upregulated and 154 downregulated) and 551 differentially expressed lncRNAs (long noncoding RNA; 369 upregulated and 182 downregulated) which were linked to the biological processes of odontogenesis, amelogenesis, tooth mineralization, and the alteration of extracellular matrix (ECM), especially matrix metalloproteinases (MMPs) and elastin. We found DNA methylation changes in 32 selected fragments involved in 5 chromosomes, 26 targets, and 2 haplotypes. Finally, three novel genes were identified: MMP20, Tgfb3, and Dusp1. Further analysis revealed that MMP20 has a role in odontogenesis and amelogenesis by influencing Slc24a4 and DSPP; Tgfb3 is involved in epithelial cell proliferation, cellular component disassembly process, ECM cellular component, and decomposition of cell components. But lncRNA expression could affect DNA methylation and mRNA expression. Moreover, the degree of DNA methylation could also affect the transcriptome level. Thus, Tgfb3 had no difference in DNA methylation, and Dusp1 conferred no difference at the transcriptome level. These three genes were all enriched in the MAPK pathway and played an important role in ECM remodeling. These data suggest that during the period of the bell differentiation stage to the secretory stage, along with enamel/dentin matrix secretion and hard tissue occurrence, the ECM is remodeled via MAPK signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.