NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides.
The article reviews the recent progress of electrochemical techniques on synthesizing nano-/microstructures as supercapacitor electrodes. With a history of more than a century, electrochemical techniques have evolved from metal plating since their inception to versatile synthesis tools for electrochemically active materials of diverse morphologies, compositions, and functions. The review begins with tutorials on the operating mechanisms of five commonly used electrochemical techniques, including cyclic voltammetry, potentiostatic deposition, galvanostatic deposition, pulse deposition, and electrophoretic deposition, followed by thorough surveys of the nano-/microstructured materials synthesized electrochemically. Specifically, representative synthesis mechanisms and the state-of-the-art electrochemical performances of exfoliated graphene, conducting polymers, metal oxides, metal sulfides, and their composites are surveyed. The article concludes with summaries of the unique merits, potential challenges, and associated opportunities of electrochemical synthesis techniques for electrode materials in supercapacitors.
NH4+ ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH4+‐storage chemistry using electrodeposited manganese oxide (MnOx). MnOx experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH4Ac) electrolyte. The NH4Ac concentration plays an important role in NH4+ storage for MnOx. The transformed MnOx with a layered structure delivers a high specific capacity (176 mAh g−1) at a current density of 0.5 A g−1, and exhibits good cycling stability over 10 000 cycles in 0.5 M NH4Ac, outperforming the state‐of‐the‐art NH4+ hosting materials. Experimental results suggest a solid‐solution behavior associated with NH4+ migration in layered MnOx. Spectroscopy studies and theoretical calculations show that the reversible NH4+ insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH4+ and the MnOx layers. These findings provide a new prototype (i.e., layered MnOx) for NH4+‐based energy storage and contributes to the fundamental understanding of the NH4+‐storage mechanism for metal oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.