CD40-CD154 interactions are of central importance in the induction of humoral and cellular immune responses. In the present study, CD154-deficient (CD154−/−) mice were used to assess the role of CD40-CD154 interactions in regulating the immune response to a systemic Salmonella infection. Compared with C57BL/6 (CD154+/+) controls, CD154−/− mice were hypersusceptible to infection by an attenuated strain of Salmonella enterica serovar Typhimurium (S. typhimurium), as evidenced by decreased survival rate and mean time to death, which correlated with increased bacterial burden and persistence in target organs. CD154−/− mice exhibited a defect both in the production of IL-12, IFN-γ, and NO during the acute phase of the disease and in the generation of Salmonella-specific Ab responses and Ig isotype switching. Furthermore, when CD154−/− animals were administered a sublethal dose of attenuated S. typhimurium and subsequently challenged with a virulent homologous strain, all mice succumbed to an overwhelming infection. Similar treatment of CD154+/+ mice consistently resulted in ≥90% protection. The lack of protective immunity in CD154−/− mice correlated with a decreased T cell recall response to Salmonella Ags. Significant protection against virulent challenge was conferred to presensitized CD154−/− mice by transfer of serum or T cells from immunized CD154+/+ mice. For best protection, however, a combination of immune serum and T cells was required. We conclude that intercellular communications via the CD40-CD154 pathway play a critical role in the induction of type 1 cytokine responses, memory T cell generation, Ab formation, and protection against primary as well as secondary Salmonella infections.
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.
Despite the great strides made in understanding the basic biology of cancer and the multiple approaches to cancer therapy that have been utilized, cancer remains a major cause of death worldwide. The two properties that define the most successful tumors are low antigenicity, enabling cancer cells to escape immune system recognition, and high tumorigenicity, allowing the cells to proliferate aggressively and metastasize to other tissues. The development of novel anticancer therapies is aimed at enhancing the antigenicity of tumors and/or increasing the functional efficiency of various effector immune system cells. The use of obligate/facultative anaerobic bacteria, which preferentially replicate within tumor tissue, as an oncolytic agent is one of the innovative approaches to cancer therapy. Over the past several years, we have studied the properties of attenuated strains of Salmonella typhimurium, a facultative anaerobe, genetically engineered to express murine cytokines. Previously, we demonstrated that cytokine-expressing strains have the capacity to modulate immunity to infection. Given the preferential tumor-homing properties of attenuated Salmonella bacteria, the potential capacity of a cytokine-encoding Salmonella strain to retard the growth of experimental melanomas was investigated. Mice pre-implanted with melanoma cells were treated with an attenuated strain of S. typhimurium or with one of its derivatives expressing IL-2. Our data demonstrate that IL-2-encoding Salmonella organisms were superior in suppressing tumor growth as compared to the parental noncytokine-expressing strain. This supports the notion of using cytokine-expressing attenuated Salmonella organisms in cancer therapy.
The progression of prostate cancer (PC) into neuroendocrine prostate cancer (NEPC) is a major challenge in treating PC. In NEPC, the PC cells undergo neuroendocrine differentiation (NED); however, the exact molecular mechanism that triggers NED is unknown. Peripheral nerves are recently shown to promote PC. However, their contribution to NEPC was not studied well. In this study, we explored whether sympathetic neurosignaling contributes to NED. We found that human prostate tumors from patients that later developed metastases and castration-resistant prostate cancer (CRPC), a stage preceding to NEPC, have high sympathetic innervations. Our work revealed that high concentrations of the sympathetic neurotransmitter norepinephrine (NE) induces NED-like changes in PC cells in vitro, evident by their characteristic cellular and molecular changes. The NE-mediated NED was effectively inhibited by the Adrβ2 blocker propranolol. Strikingly, propranolol along with castration also significantly inhibited the development and progression of NEPC in vivo in an orthotopic NEPC model. Altogether, our results indicate that the NE-Adrβ2 axis is a potential therapeutic intervention point for NEPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.