A systematic study on the selective semihydrogenation of alkynes to alkenes on shape-controlled palladium (Pd) nanocrystals was performed. Pd nanocrystals with a cubic shape and thus exposed {100} facets were synthesized in an aqueous solution through the reduction of Na2PdCl4 with L-ascorbic acid in the presence of bromide ions. The Pd nanocubes were tested as catalysts for the semihydrogenation of various alkynes such as 5-decyne, 2-butyne-1,4-diol, and phenylacetylene. For all substrates, the Pd nanocubes exhibited higher alkene selectivity (>90 %) than a commercial Pd/C catalyst (75-90 %), which was attributed to a large adsorption energy of the carbon-carbon triple bond on the {100} facets of the Pd nanocubes. Our approach based on the shape control of Pd nanocrystals offers a simple and effective route to the development of a highly selective catalyst for alkyne semihydrogenation.
We developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley–Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.
Carboxymethylated dextran (CMD)-coated magnetic iron oxide nanoparticles (MNPs) were synthesized using a co-precipitation method. Compared to neutral dextran coated MNPs, the CMD coating provides good dispersity and colloidal stability to the CMD-MNPs. In particular, the carboxyl groups on the CMD can be readily activated for covalent attachment of antibody molecules. The superparamagnetic property of the antibody-covered CMD-MNPs enables the captured antigen to be separated from the sample solution and CMD coating significantly reduces the nonspecific binding of the nanoparticles. Regeneration of the anti-BSA antibody-covered CMD-MNPs with NaOH does not significantly decrease the antibody activity, and the repeated magnetic separation and washing steps cause only small loss of the starting materials. The method was found to be highly reproducible (RSDs for BSA adsorption and desorption are between 0.78% and 5.1%). The anti-BSA antibody-covered CMD-MNPs possess good selectivity and are able to capture protein antigens from real samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.