Rheumatoid arthritis (RA) synovial fibroblasts produce matrix metaloproteinases (MMPs), which destroy cartilage and bone in RA joint. Tumor necrosis factor-alpha (TNF-alpha) is one of the most important mediator leading to MMP production in RA synovial fibroblasts. Here we show that epigallocatechin-3-Gallate (EGCG) suppresses TNF-alpha-induced production of MMP-1 and MMP-3 in RA synovial fibroblasts, which was accompanied by inhibition of mitogen activated protein kinase (MAPK) and activator protein-1 (AP-1) pathways. EGCG treatment resulted in dose-dependent inhibition of TNF-alpha-induced production of MMP-1 and MMP-3 at the protein and mRNA levels in RA synovial fibroblast. EGCG treatment also inhibited TNF-alpha-induced phosphorylation of MAPKs, such as ERK1/2, p38, JNK. Electrophoretic mobility shift assay revealed that EGCG inhibits binding of AP-1 proteins to its response elements in synovial fibroblast treated. Thus, EGCG may play a role in regulating inflammation and bone destruction in RA patients.
Caenorhabditis elegans is an accepted model host to study host-bacteria interactions in the gut, in addition to being a simple model with which to study conserved aspects of biological signaling pathways in intestinal environments, because these nematode worms have similar intestinal cells to those of humans. Here, we used C. elegans to develop a new in vivo screening system for potential probiotic lactic acid bacteria (LAB). Initially, critical colonization ability of LAB strains isolated from Korean infant feces was screened in the worm intestinal tract over a period of 5 d. Furthermore, we investigated host health-promoting activities, including longevity-extending effects and immune-enhancing activities against foodborne pathogen infection. We identified 4 LAB strains that were highly persistent in the nematode gut and that significantly prolonged the longevity of C. elegans and improved the survival of C. elegans in response to infection by Staphylococcus aureus. The 4 LAB strains we identified showed resistance to acid and bile conditions, assimilated cholesterol, and were able to attach to a mucus layer. The 4 LAB isolates were identified as Lactobacillus plantarum using 16S rRNA sequencing analysis. Taken together, we developed a direct in vivo screening system using C. elegans to study host health-promoting LAB. Our system is simple, rapid, cost-effective, and reliable, and we anticipate that this system will result in the discovery of many more potential probiotic bacteria for dairy foods.
The objective of this study is to determine the effects of adrenomedullin (AM) on IL-1- and TNF-alpha-induced rheumatoid synovial fibroblasts (RASFs)-mediated osteoclastogenesis. The formation of osteoclasts in co-cultures of RASFs and peripheral blood mononuclear cells was evaluated by tartrate-resistant acid phosphatase and resorption pit formation assay. The expression of RANKL, OPG, p-ERK, p-p38, and p-JNK was examined by immunoblotting and quantitative reverse transcription-polymerase chain reaction. AM (1-52) inhibits IL-1- and TNF-alpha-induced RASFs-mediated osteoclastogenesis. AM affected IL-1-, TNF-alpha-induced RANKL and OPG expression in RASFs. AM also inhibits IL-1 and TNF-alpha-induced phosphorylation of ERK-1/2, p38 MAPK, and JNK. Inhibitor of AM (AM 22-52) inhibits the effects of AM on the osteoclastogenesis. These results suggest that AM might be involved in the inflammatory cytokines-mediated osteoclastogenesis and thus bone damage, and indicate that it can be a new therapeutic strategy against joint destruction in RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.