Among various available materials used in transparent and flexible devices, MXenes are attracting attention as a brand-new candidate in this category. Ti 3 C 2 Tx MXene as a 2D material has exceptional properties, making it a potential material having numerous applications in different areas. Because of its high conductivity, it can be used in transparent conducting electrodes (TCEs). In this study, the MXenes etched by highly concentrated acid at 50 °C,were spin-coated on polyethylene terephthalate (PET) film and annealed at moderate temperatures up to 170 °C. The adhesion of MXene to PET was found to be remarkably improved by annealing. These TCEs exhibited a sheet resistance of ∼424 Ω/sq. and transmittance of ∼87%. The aging stability of MXene-coated PET films against oxidation under ambient conditions was studied up to 28 days and resistance change was found ∼30% during this period. The flexibility test showed low bending resistance change (∼1.5%) at 1000th cycle and cumulative resistance change of ∼20% at a bending radius of ∼3.9 mm after 1000 cycles. These transparent, flexible, and conducting electrodes were used to fabricate polymer dispersed liquid crystal (PDLC)based flexible smart windows. The smart windows fabricated by curing PDLC mixture sandwiched between the MXene electrodes were also found flexible in ON/OFF states. The MXene-based flexible smart windows resulted in good opacity in the OFF state and high transparency in the ON state, exhibiting low threshold voltage <10 V and high transmittance ∼80% at 60 V. The flexible smart windows operated normally even at ∼4 mm bending radius.
An ultrahigh capacity supercapacitor is fabricated using a nano-layered MXene as an active electrode material, and Ni-foil is used as a current collector. The high-quality Ti3C2Tx obtained from supernatant during etching and washing processes improves the specific capacitance significantly. As another strategy, the surface of Ni-foil is engineered by coating chemical vapor deposition-grown graphene. The graphene grown directly on the Ni-foil is used as a current collector, forming the electrode structure of Ti3C2Tx/graphene/Ni. The surface passivation of the current collectors has a high impact on charge-transfer, which in turn increases the capacitance of the supercapacitors. It is found that the capacitance of the graphene-based supercapacitors is more than 1.5 times of the capacitance without graphene. A high specific capacitance, ~ 542 F/g, is achieved at 5 mV/s scan rate based on cyclic voltammetry analysis. Also, the graphene-based supercapacitor exhibits a quasi-rectangular form in cyclic voltammetry curves and a symmetric behavior in charge/discharge curves. Furthermore, cyclic stability up to 5000 cycles is confirmed with high capacitance retention at high scan rate 1000 mV/s. A reduced series resistance with a high limit capacitance is revealed by equivalent circuit analysis with the Nyquist plot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.