More information about this series at http://www.springer.com/series/720The series founded in 1975 and formerly (until 2005) entitled Texts and Monographs in Physics (TMP) publishes high-level monographs in theoretical and mathematical physics. The change of title to Theoretical and Mathematical Physics (TMP) signals that the series is a suitable publication platform for both the mathematical and the theoretical physicist. The wider scope of the series is reflected by the composition of the editorial board, comprising both physicists and mathematicians. The books, written in a didactic style and containing a certain amount of elementary background material, bridge the gap between advanced textbooks and research monographs. They can thus serve as basis for advanced studies, not only for lectures and seminars at graduate level, but also for scientists entering a field of research.
We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.
The spectrum of the Schrödinger operator in a quantum waveguide is known to be unstable in two and three dimensions. Any enlargement of the waveguide produces eigenvalues beneath the continuous spectrum [BGRS]. Also if the waveguide is bent eigenvalues will arise below the continuous spectrum [DE]. In this paper a magnetic field is added into the system. The spectrum of the magnetic Schrödinger operator is proved to be stable under small local deformations and also under small bending of the waveguide. The proof includes a magnetic Hardy-type inequality in the waveguide, which is interesting in its own.
We study Dirichlet Laplacian in a screw-shaped region, i.e. a straight twisted tube of a non-circular cross section. It is shown that a local perturbation which consists of "slowing down" the twisting in the mean gives rise to a non-empty discrete spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.