Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time- dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel inhibitor of autophagy with an mTOR activating effect.
We report for the first time that 10-day CR can attenuate the altered signaling transduction for inflammatory processes which is mediated through RS-induced NF-kB and AP-1 in aged kidney.
Kaempferol, one of the phytoestrogens, is found in berries and Brassica and Allium species and is known to have antioxidative and anti-inflammatory properties. In the present study, we examined the molecular mechanisms underlying the anti-inflammation effect of kaempferol in an aged animal model. To examine the effect of kaempferol in aged Sprague-Dawley rats, kaempferol was fed at 2 or 4 mg/kg/day for 10 days. The data show that kaempferol exhibited the ability to maintain redox balance. Kaempferol suppressed nuclear factor-kappaB (NF-kappaB) activation and expression of its target genes cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and regulated upon activation, and normal T-cell expressed and secreted in aged rat kidney and in tert-butylhydroperoxide-induced YPEN-1 cells. Furthermore, kaempferol suppressed the increase of the pro-inflammatory NF-kappaB cascade through modulation of nuclear factor-inducing kinase (NIK)/IkappaB kinase (IKK) and mitogen-activated protein kinases (MAPKs) in aged rat kidney. Based on these results, we concluded that anti-oxidative kaempferol suppressed the activation of inflammatory NF-kappaB transcription factor through NIK/IKK and MAPKs in aged rat kidney.
Angiotensin II (Ang II), a major effector of the renin-angiotensin system, is now recognized as a pro-inflammatory mediator. This Ang II signaling, which causes transcription of pro-inflammatory genes, is regulated through nuclear factor-κB (NF-κB). At present, the molecular mechanisms underlying the effect of aging on Ang II signaling and NF-κB activation are not fully understood. The purpose of this study was to document altered molecular events involved in agerelated changes in Ang II signaling and NF-κB activation. Experimentations were carried out using kidney tissues from Fischer 344 rats at 6, 12, 18, and 24 months of age, and the rat endothelial cell line, YPEN-1 for the detailed molecular work. Results show that increases in Ang II and Ang II type 1 receptor during aging were accompanied by the generation of reactive species. Increased Ang II activated NF-κB by phosphorylating IκBα and p65. Increased phosphorylation of p65 at Ser 536 was mediated by the enhanced phosphorylation of IκB kinase αβ, while phosphorylation site Ser 276 of p65 was mediated by upregulated mitogen-activated and stress-activated protein kinase-1. These altered molecular events in aged animals were partly verified by experiments using YPEN-1 cells. Collectively, our findings provide molecular insights into the pro-inflammatory actions of Ang II, actions that influence the phosphorylation of p65-mediated NF-κB activation during aging. Our study demonstrates the age-related pleiotropic nature of the physiologically important Ang II can change into a deleterious culprit that contributes to an increased incidence of many chronic diseases such as atherosclerosis, diabetes, and dementia.
Lysophosphatidylcholine (LPC) is a lysolipid, acting as a potent cellular mediator of various biological processes. The purpose of this study was to define the role of LPC as a possible causative factor of disrupted redox balance in aged aorta from rats. In this study, we found elevated serum LPC levels in 24-month-old rats that were correlated with the age-related increase in cytosolic phospholipase A(2) (PLA(2)) activity. We also found that aortas from old rats showed increased 5-lipoxygenase (5-LO) activity. With the LPC-treated endothelial cells (YPEN-1 cells), we observed a rapid generation of reactive species, leading to enhanced oxidative stress. Our further investigations using specific 5-LO inhibitors led to the identification of a 5-LO pathway as the reactive species production source in the LPC-treated cells. Additional validation of this 5-LO pathway was made by the detection of increased leukotriene B4 generation in the LPC-treated cells. These in vitro data supported findings of increased expression and activation of aortic 5-LO in old rats by LPC. Together, our data strongly suggested that LPC caused the enhancement of oxidative stress in aged aorta through reactive species generation by an activated 5-LO pathway. LPC may well be an important contributor to age-related oxidative stress in aging aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.