The segmental premature aging disease, Hutchinson-Gilford Progeria (HGPS) is caused by a truncated and farnesylated form of Lamin A. In a mouse model for HGPS, a similar Lamin A variant causes the proliferative arrest and death of post-natal but not embryonic fibroblasts. Arrest is due to an inability to produce a functional extracellular matrix (ECM), as growth on normal ECM rescues proliferation. The defects are associated with inhibition of canonical Wnt signaling, due to reduced nuclear localization and transcriptional activity of Lef1, but not Tcf4, in both mouse and human progeric cells. Defective Wnt signaling, affecting ECM synthesis, maybe critical to the etiology of HGPS as mice exhibit skeletal defects and apoptosis in major blood vessels proximal to the heart. These results establish a functional link between the nuclear envelope/lamina and the cell surface/ECM and may provide insights into the role of Wnt signaling and the ECM in aging.
Bioactive phospholipids, which include sphingosine-1-phosphate,lysophosphatidic acid, ceramide and their derivatives regulate a wide variety of cellular functions in culture such as proliferation, apoptosis and differentiation. The availability of these lipids and their products is regulated by the lipid phosphate phosphatases (LPPs). Here we show that mouse embryos deficient for LPP3 fail to form a chorio-allantoic placenta and yolk sac vasculature. A subset of embryos also show a shortening of the anterior-posterior axis and frequent duplication of axial structures that are strikingly similar to the phenotypes associated with axin deficiency,a critical regulator of Wnt signaling. Loss of LPP3 results in a marked increase in β-catenin-mediated TCF transcription, whereas elevated levels of LPP3 inhibit β-catenin-mediated TCF transcription. LPP3 also inhibits axis duplication and leads to mild ventralization in Xenopusembryo development. Although LPP3 null fibroblasts show altered levels of bioactive phospholipids, consistent with loss of LPP3 phosphatase activity, mutant forms of LPP3, specifically lacking phosphatase activity, were able to inhibit β-catenin-mediated TCF transcription and also suppress axis duplication, although not as effectively as intact LPP3. These results reveal that LPP3 is essential to formation of the chorio-allantoic placenta and extra-embryonic vasculature. LPP3 also mediates gastrulation and axis formation, probably by influencing the canonical Wnt signaling pathway. The exact biochemical roles of LPP3 phosphatase activity and its undefined effect on β-catenin-mediated TCF transcription remain to be determined.
An important step in retinal development is the positioning of progenitors within the eye field where they receive the local environmental signals that will direct their ultimate fate. Recent evidence indicates that ephrinB1 functions in retinal progenitor movement, but the signalling pathway is unclear. We present evidence that ephrinB1 signals through its intracellular domain to control retinal progenitor movement into the eye field by interacting with Xenopus Dishevelled (Xdsh), and by using the planar cell polarity (PCP) pathway. Blocking Xdsh translation prevents retinal progeny from entering the eye field, similarly to the morpholino-mediated loss of ephrinB1 (ref. 2). Overexpression of Xdsh can rescue the phenotype induced by loss of ephrinB1, and this rescue (as well as a physical association between Xdsh and ephrinB1) is completely dependent on the DEP (Dishevelled, Egl-10, Pleckstrin) domain of Xdsh. Similar gain- and loss-of-function experiments suggest that Xdsh associates with ephrinB1 and mediates ephrinB1 signalling through downstream members of the PCP pathway during eye field formation.
A body of evidence is emerging that shows a requirement for ephrin ligands in the proper migration of cells, and the formation of cell and tissue boundaries. These processes are dependent upon the cell-cell adhesion system that plays a critical role in normal morphogenetic processes during development, as well as in invasion and metastasis1–9. Although ephrinB ligands are bi-directional signaling molecules, the precise mechanism by which ephrinB1 signals through its intracellular domain to regulate cell-cell adhesion in epithelial cells has remained elusive. Here, we present evidence that ephrinB1 associates with the Par polarity complex protein, Par-6, a scaffold protein required for establishing tight junctions, and can compete with the small GTPase Cdc42 for an association with Par-6. This competition results in inactivation of the Par complex, resulting in the loss of tight junctions. Moreover, the interaction between ephrinB1 and Par-6 is disrupted upon tyrosine phosphorylation of the intracellular domain of ephrinB1. Thus, we have identified a mechanism by which ephrinB1 signaling regulates cell-cell junctions in epithelial cells, and this may impact how we devise therapeutic interventions regarding these molecules in metastatic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.