Рассмотрены свойства оптических материалов для использования в терагерцовом (ТHz) спектральном диапазоне, являющемся пограничным между оптическим и радиодиапазонами. Актуальность направления, связанного с оптикой ТHz приборов, во многом определяется активизацией работ по созданию лазеров ТHz диапазона и выявлением существенных проблем по использованию оптических материалов для данных применений в целом. Настоящая работа посвящена анализу свойств, прежде всего оптических, применяемых ТHz материалов. Представлены характеристики, рассмотрены и сопоставлены физико-химические и оптические свойства традиционных и новых материалов, в том числе кристаллических (кремний, сапфир, кварц, алмаз, германий, карбид кремния), а также ряда полимерных (полиметилпентен, полиэтилен, фторопласт).
Laser treatment for samples of copper, its alloys and gold was carried out with a UV pulse of nanosecond duration. After irradiation at subthreshold values of the energy density (E ∼ 0.2 - 0.8 J/cm2) the noticeable changes in the surface layer were revealed. These are traces of thermoplastic deformation resulting from laser exposure. They appear as uneven rise of the irradiated sample surface area up to 1 μm. The effect is cumulative, because the height of the uplifts increases with increasing number of impact pulses. In addition, the characteristic features of high-temperature plastic deformation were observed in the form of crystallographic slip and grain-boundary slippage. At E ∼ 1 J/cm2 or more the optical breakdown occurred with the formation of a crater on the metal surface, that precludes the detection of described effects. The mechanical impulse of a laser plasma, when exposed to a metal surface, prevents the thermomechanical expansion of the material, and therefore, similar effects have not been previously observed. On the surface of materials with a significantly larger elastic limit (single crystals of germanium and silicon, a tungsten carbide) this phenomenon was not observed, because the generated thermomechanical stresses were insufficient to create conditions of plastic deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.