A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p < 0.05). Of the 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p < 0.05). CP also had the highest swelling ratio and fastest drug release, followed by C and CG (p < 0.05). Both CP and CG were stiffer and degraded more slowly in saline solution than C (p < 0.05). In summary, 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances.
Objectives: The amount of fat tissue is associated with an increasing incidence of cardiac arrhythmias. The purpose of this study was to investigate effects of adipocytokines from different body fat on delayed rectifier K+ outward currents (IK). Methods: H9c2 cells were treated with adipocytokine-free medium (the Adipo-free group) and with adipocytokines from epicardial (central fat group) and limb (peripheral fat group) rat fat tissues. IK, as well as expressions of Kv2.1 and Kv2.1 mRNA in H9c2 cells, were measured and compared between different groups. Results: IK measured in H9c2 cells immediately after treatment with adipocytokines were not significantly different from those treated with adipocytokine-free medium. After H9c2 cells were treated with adipocytokines for 18 h, IK were significantly decreased in the peripheral and central fat groups in comparison with the Adipo-free group. Compared with the peripheral fat group, IK were more significantly decreased in the central fat group. Expressions of Kv2.1 and Kv2.1 mRNA in H9c2 cells were not significantly different among the three groups. Conclusions: Adipocytokines significantly decreased IK in H9c2 cells, and IK was more prominently decreased by adipocytokines from epicardial fat than from limb fat tissues. The decrease in IK by adipocytokines may partially contribute to the mechanisms of arrhythmogenesis by fat tissues.
Sodium-glucose transporter 2 (SGLT2) inhibitors were shown to decrease mortality from cardiovascular diseases in the EMPA-REG trial. However, the effects of empagliflozin (EMPA) for cardiac arrhythmia are not yet clarified. A total of 20 C57BL/6J mice were divided into four groups: (1) The control group were fed standard chow, (2) the metabolic syndrome (MS) group were fed a high-fat diet, (3) the empagliflozin (EMPA) group were fed a high-fat diet and empagliflozin 10 mg/kg daily, and (4) the glibenclamide (GLI) group were fed a high-fat diet and glibenclamide 0.6 mg/kg daily. All mice were sacrificed after 16 weeks of feeding. H9c2 cells were treated with adipocytokines from the pericardial and peripheral fat from the study groups. The delayed-rectifier potassium current (IK) and L-type calcium channel current (ICa,L) were measured by the whole-cell patch clamp techniques. Adipocytokines from the peripheral and pericardial fat tissues of mice with MS could decrease the IK and increase the ICa,L of cardiomyocytes. After treating adipocytokines from pericardial fat, the IK in the EMPA and GLI groups were significantly higher than that in the MS group. The IK of the EMPA group was also significantly higher than the GLI group. The ICa,L of the EMPA and GLI groups were significantly decreased overload compared with that of the MS group. However, there was no significant difference of IK and ICa,L among study groups after treating adipocytokines from peripheral fat. Adipocytokines from pericardial fat but not peripheral fat tissues after EMPA therapy attenuated the effects of IK decreasing and ICa,L increasing in the MS cardiomyocytes, which may contribute to anti-arrhythmic mechanisms of sodium-glucose transporter 2 (SGLT2) inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.