The unique combination of great stiffness, strength, and extensibility makes spider major ampullate (MA) silk desirable for various biomimetic and synthetic applications. Intensive research on the genetics, biochemistry, and biomechanics of this material has facilitated a thorough understanding of its properties at various levels. Nevertheless, methods such as cloning, recombination, and electrospinning have not successfully produced materials with properties as impressive as those of spider silk. It is nevertheless becoming clear that silk properties are a consequence of whole-organism interactions with the environment in addition to genetic expression, gland biochemistry, and spinning processes. Here we assimilate the research done and assess the techniques used to determine distinct forms of spider silk chemical and physical property variability. We suggest that more research should focus on testing hypotheses that explain spider silk property variations in ecological and evolutionary contexts.
BackgroundIt is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved.Methodology/Principal FindingsWe fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake.ConclusionsOur results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics.
SUMMARY Recent studies have demonstrated that orb-weaving spiders may alter web structures, foraging localities or silk output in response to prey variations. In this study we conducted field surveys and food manipulations to examine whether orb-weaving spiders may also adjust the protein of silk to prey variations. A comparison of dragline silks collected from nine giant wood spider Nephila pilipes populations in Taiwan showed a spatial variation. The percentage of all amino acids (except alanine and glycine)exhibited significant differences among populations. A survey of prey composition also revealed a significant spatial variation among N. pilipes populations. To determine whether prey variation was responsible for silk protein variation, we fed N. pilipes with different types of prey (dipteran vs orthopteran) then compared the percentage of five major dragline amino acids and secondary structures. The results showed that dragline of N. pilipes fed with orthopteran prey contained significantly higher proline and glutamine but lower alanine. Congruent with this result were those from FTIR spectroscopy, which showed that dragline of N. pilipes fed with crickets exhibited significantly higher percentage of proline- and glutamine-containing β turns, and lower percentage of alanine-containing β sheet structures. Since the results of feeding manipulations showed that diet significantly affected the compositions of dragline silks, the observed spatial variation seemed to reflect the different types of prey these spiders had consumed. Results of this study thus indicated that orb-weaving spiders can alter dragline protein in response to prey variations.
reflectances of the background and body surface of spiders showed that the brightly coloured body parts of the typical morph exhibited rather high values, but those of the dark body parts were below the discrimination threshold. The differential colour contrasts of body parts generated a visual signal unlike that of a spider but rather like certain forms of food resources. On the other hand, the melanic morphs did not have bright colouration and the colour contrasts of every part of the body were significantly higher than the threshold, making the contour of spiders quite clear to bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.