Because of their high‐specific stiffness, carbon‐filled epoxy composites can be used in structural components in fixed‐wing aircraft. Graphene nanoplatelets (GNPs) are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat epoxy (EPON 862 with Curing Agent W) and 1–6 wt % GNP in epoxy composites. The cure cycle used for this aerospace epoxy resin was 2 h at 121°C followed by 2 h at 177°C. These materials were tested for tensile properties using typical macroscopic measurements. Nanoindentation was also used to determine modulus and creep compliance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.36 GPa for 6 wt % (3.7 vol %) GNP in epoxy composite. The modulus results from nanoindentation followed this same trend. For loadings from 10 to 45 mN, the creep compliance for the neat epoxy and GNP/epoxy composites was similar. The GNP aspect ratio in the composite samples was confirmed to be similar to that of the as‐received material by using the percolation threshold measured from electrical resistivity measurements. Using this GNP aspect ratio, the two‐dimensional randomly oriented filler Halpin–Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the GNP/epoxy composites. Per the authors' knowledge, mechanical properties and modeling for this GNP/epoxy system have never been reported in the open literature. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.
Due to their high specific stiffness, carbon-filled epoxy composites can be used in structural components in aircraft. Graphene nanoplatelets are short stacks of individual layers of graphite that are a newly developed, lower cost material that often increases the composite tensile modulus. In this work, researchers fabricated neat aerospace epoxy (EPON 862 with Curing Agent W) and 1 to 6 wt% of two different types of graphene nanoplatelets (XG Sciences xGnP®-M-5 and xGnP®-C-300) in epoxy composites. These materials were tested for tensile properties using typical macroscopic measurements. In addition, nanoindentation was used to determine modulus and creep compliance. The macroscopic measurements showed that the tensile modulus increased from 2.72 GPa for the neat epoxy to 3.35 GPa for 6 wt% (3.7 vol%) xGnP®-M-5/epoxy composite and 3.10 GPa for 6 wt% (3.7 vol%) xGnP®-C-300/epoxy composite. The modulus results from nanoindentation followed this same trend. xGnP®-C-300/epoxy composites had higher tensile strength and ductility compared to similar loading levels of xGnP®-M-5/epoxy composites. The creep compliance for the neat epoxy, 1 to 6 wt% xGnP®-M-5/epoxy composites, and 1 to 6 wt% xGnP®-C-300/epoxy composites were similar. The two dimensional randomly oriented filler Halpin-Tsai model adjusted for platelet filler shape predicts the tensile modulus well for the xGnP®-M-5/epoxy composites and the three-dimensional randomly oriented filler Halpin-Tsai model works well for the xGnP®-C-300/epoxy composites. Per the authors’ knowledge, mechanical properties and modeling for xGnP®-M-5 and xGnP®-C-300 in this epoxy system has never been reported in the open literature.
Electrically and thermally conductive resins can be produced by adding conductive fillers to insulating polymers. Mechanical properties such as tensile modulus, ultimate tensile strength, strain at ultimate tensile strength, and notched Izod impact strength are also important and cannot be ignored. This research focused on performing compounding runs followed by injection molding and tensile and impact property testing of carbon filled nylon 6,6 and polycarbonate based resins. The three carbon fillers investigated included an electrically conductive carbon black, synthetic graphite particles, and a milled pitch based carbon fiber. For each polymer, resins were produced and tested that contained varying amounts of these single carbon fillers. In addition, combinations of fillers were investigated by conducting a full 23 factorial design and a complete replicate in each polymer. The objective of this paper was to determine the effects and interactions of each filler on the tensile and impact properties. The results showed that, in many cases, combining two and three different fillers caused a statistically significant effect at the 95% confidence level. Polym. Compos. 25:172–185, 2004. © 2004 Society of Plastics Engineers.
Electrically and thermally conductive resins can be produced by adding conductive fillers to insulating polymers. Mechanical properties such as tensile modulus, ultimate tensile stress, strain at ultimate tensile stress, and notched Izod impact strength are also important and cannot be ignored. This study focused on performing compounding runs, followed by injection molding and evaluation of tensile and impact properties of carbon filled nylon-6,6 based resins. The three carbon fillers investigated include an electrically conductive carbon black, synthetic graphite particles, and a surface treated polyacrylonitrile (PAN) based carbon fiber. Resins containing varying amounts of these single carbon fillers were produced and tested. In addition, combinations of fillers were investigated by conducting a full 2 3 factorial design and a complete replicate. The addition of carbon fiber increased the composite tensile modulus, ultimate tensile stress, and impact strength. Also, in many cases, combining two or three different fillers caused a statistically significant effect at a 95% confidence level. When comparing the results of this study with prior work, it appears that increased heteroatoms present on the carbon fiber surface likely improve composite ultimate tensile stress and impact strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.