This paper reports on the robot EcoBot-II, which is designed to power itself solely by converting unrefined insect biomass into useful energy using on-board microbial fuel cells with oxygen cathodes. In bench experiments different 'fuels' (sugar, fruit and dead flies) were explored in the microbial fuel cell system and their efficiency of conversion to electricity is compared with the maximum available energy calculated from bomb calorimetry trials. In endurance tests EcoBot-II was able to run for 12 days while carrying out phototaxis, temperature sensing and radio transmission of sensed data approximately every 14 min.
Autonomous grasping is an important but challenging task and has therefore been intensively addressed by the robotics community. One of the important issues is the ability of the grasping device to accommodate varying object shapes in order to form a stable, multi-point grasp. Particularly in the human environment, where robots are faced with a vast set of objects varying in shape and size, a versatile grasping device is highly desirable. Solutions to this problem have often involved discrete continuum structures that typically comprise of compliant sections interconnected with mechanically rigid parts. Such devices require a more complex control and planning of the grasping action than intrinsically compliant structures which passively adapt to complex shapes objects. In this paper, we present a low-cost, soft cable-driven gripper, featuring no stiff sections, which is able to adapt to a wide range of objects due to its entirely soft structure. Its versatility is demonstrated in several experiments. In addition, we also show how its compliance can be passively varied to ensure a compliant but also stable and safe grasp.
The development of the microbial fuel cell (MFC) technology has seen an enormous growth over the last hundred years since its inception by Potter in 1911. The technology has reached a level of maturity that it is now considered to be a field in its own right with a growing scientific community. The highest level of activity has been recorded over the last decade and it is perhaps considered commonplace that MFCs are primarily suitable for stationary, passive wastewater treatment applications. Sceptics have certainly not considered MFCs as serious contenders in the race for developing renewable energy technologies. Yet this is the only type of alternative system that can convert organic waste-widely distributed around the globe-directly into electricity, and therefore, the only technology that will allow artificial agents to autonomously operate in a plethora of environments. This Minireview describes the history and current state-of-the-art regarding MFCs in robotics and their vital role in artificial symbiosis and autonomy. Furthermore, the article demonstrates how pursuing practical robotic applications can provide insights of the core MFC technology in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.