The standard continuous adaptation feedback cancellation algorithm for feedback suppression in hearing aids suffers from a large model error or bias if the received sound signal is spectrally colored. To reduce the bias in the feedback path estimate, we propose adaptive feedback cancellation techniques that are based on a closed-loop identification of the feedback path as well as the (auto-regressive) modeling of the desired signal. In general, both models are not simultaneously identifiable in the closed-loop system at hand. We show that-under certain conditions, e.g., if a delay is inserted in the forward path-identification of both models is indeed possible. Two classes of adaptive procedures for identifying the desired signal model and the feedback path are derived: a two-channel identification method as well as a prediction error method. In contrast to the two-channel identification method, the prediction error method allows use of different adaptation schemes for the feedback path and for the desired signal model and, hence, is found to be preferable for highly nonstationary sound signals. Simulation results demonstrate that the proposed techniques outperform the standard continuous adaptation algorithm if the conditions for identifiability are satisfied.
Abstract-A polynomial eigenvalue decomposition of parahermitian matrices can be calculated approximately using iterative approaches such as the sequential matrix diagonalisation (SMD) algorithm. In this paper, we present an improved SMD algorithm which, compared to existing SMD approaches, eliminates more off-diagonal energy per step. This leads to faster convergence while incurring only a marginal increase in complexity. We motivate the approach, prove its convergence, and demonstrate some results that underline the algorithm's performance.
The ability to discriminate between ballistic missile warheads and confusing objects is an important topic from different points of view. In particular, the high cost of the interceptors with respect to tactical missiles may lead to an ammunition problem. Moreover, since the time interval in which the defense system can intercept the missile is very short with respect to target velocities, it is fundamental to Manuscript
An analytic parahermitian matrix admits an eigenvalue decomposition (EVD) with analytic eigenvalues and eigenvectors except in the case of multiplexed data. In this paper, we propose an iterative algorithm for the estimation of the analytic eigenvalues. Since these are generally transcendental, we find a polynomial approximation with a defined error. Our approach operates in the discrete Fourier transform (DFT) domain and for every DFT length generates a maximally smooth association through EVDs evaluated in DFT bins; an outer loop iteratively grows the DFT order and is shown, in general, to converge to the analytic eigenvalues. In simulations, we compare our results to existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.