Tissue-engineered oral mucosal equivalents have been developed for clinical applications and also for in vitro studies of biocompatibility, mucosal irritation, disease, and other basic oral biology phenomena. This paper reviews different tissue-engineering strategies used for the production of human oral mucosal equivalents, their relative advantages and drawbacks, and their applications. Techniques used for skin tissue engineering that may possibly be used for in vitro reconstruction of human oral mucosa are also discussed.
Components released from dental composite resins are essential factors in the assessment of biocompatibility of these materials. The effect of different extraction media on monomer release from composite resins based on different monomer types was evaluated. Three types of visible light cured composite resins were formulated based on the following monomers: triethylene glycol dimethacrylate (TEGDMA), bisphenol A glycerolate dimethacrylate (BisGMA), and urethane dimethacrylate (UDMA). Seventy-five composite resin discs were fabricated and light cured for 1 min in the absence of oxygen. Extraction media used were: distilled water, saline solution, artificial saliva, serum-free culture medium, and culture medium with 10% fetal calf serum. The analysis of extracts from the composite resins was carried out by High Performance Liquid Chromatography (HPLC). Quantifiable amounts of TEGDMA were released into the aqueous media. However, BisGMA and UDMA were not detectable in any of the extracts from the composite resins. Statistical analysis by one-way ANOVA followed by Tukey's test showed that there was a significant difference in TEGDMA release between culture media and other media (p < 0.05). From the results of this experiment it can be concluded that TEGDMA-based composite resins can release a high quantity of monomer into aqueous environments. The type of extraction medium may have a significant effect on monomer release from composite resins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.