The object of research is hard alloys with a morphology of the carbide phase skeleton structure, in which particles contact with each other, and the gaps between them are filled with a binder phase. The mechanical and service characteristics of such materials depend on the degree of development of the skeleton structure. One of the most problematic areas is the lack of non-destructive methods for determining the parameters of the structure. The introduction of such techniques will allow obtaining objective information on the structure of the material and using it to evaluate the quality of products. In the course of the study, the parameters of the scattering of elastic vibrations in inhomogeneous media were determined. The main hypothesis of the study is the assumption that the processes of energy dissipation occur both in the structural elements themselves (carbide grains and bond areas) and at their boundaries. Therefore, the evaluation of dissipation processes will allow obtaining a quantitative estimation of the alloys structure parameters, and will allow assessing the quality of the material. The following characteristics were chosen as the parameters characterizing the propagation of ultrasonic oscillations: the speed of the oscillations propagation, the scattering background level in relation to the amplitude of the bottom reflection, the oscillations attenuation coefficient. The parameters were determined and compared with the characteristics of the quality of the products and the parameters of the microstructure, which were determined by the methods of quantitative metallography and the statistical characteristics of the relationship between the parameters, were determined. As a result, new quality control procedures for carbide products have been developed. The contiguity characteristics of the carbide skeleton of the sintered cemented carbide were determined by measuring the propagation speed of ultrasonic oscillations. The assessment of the level of porosity with a pore size of less than 1 mm was carried out according to the results of measuring the relative amplitude of the background scattering of ultrasonic oscillations. The proposed methods are non-destructive and are carried out in one cycle with ultrasonic flaw detection, to which 100% of the products are subjected. These techniques have been introduced in the production of carbide rolls by the method of controlled hot vacuum pressing. They have become an integral part of the quality control system for carbide rolls.
The object of research is the effect of the carbon-forming component of coated electrodes for welding and surfacing of Gadfield steel (110G13L and analogs) on the structure and properties of the weld. One of the most problematic areas in the welding and surfacing of high-carbon steel is the high irregularity of the rod and coating melting rates. Therefore, the non-melted part of the coating is literally poured into the weld pool, which leads to significant chemical and structural inhomogeneity of the welded metal. The main hypothesis of the study is the assumption that it is possible to increase the homogeneity of the deposited metal by changing the conditions for the transition of carbon from the electrode to the weld pool by using an electrode rod made of carbon steel. In the course of the study, electrode rods with different carbon contents were used. With an increase in the carbon content in the composition of the electrode rod, the fluidity of the drops increased, which contributed to a decrease in the strength of the welding current without harm to the welding and technological characteristics. This allows to reduce the generation of heat in the base metal, that is an effective measure to prevent hot cracks in the weld metal and heat affected zone Studies of the composition of the electrode metal droplets and the weld material showed that with an increase in the carbon content in the electrode rod from 0.08 % to 0.8 %, the carbon content in the droplets increases from 0.3 % to 0.97 %. The carbon content in the weld metal is 1.1 %. The assimilation of manganese by a drop increases with an increasing of coating and the droplet interaction time. A significant increasing in the rate of coating melting was obtained. This is due to the fact that the concomitant decrease in the content of graphite in the coating contributes to a decrease in the refractoriness of the electrode coating. The use of high carbon steels for the manufacturing of electrode rods for welding and surfacing of Gadfield steel improves the properties of the welded metal and sanitary and hygienic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.