Social self‐sorting: A binary and a ternary pseudorotaxane, which both contain cucurbituril homologues and share methylviologen as the guest, can self‐sort. These two self‐sorting pseudorotaxanes were further integrated into one well‐defined hetero[3]pseudorotaxane with one symmetrical axle that exclusively selects a pair of different cucurbiturils in a social self‐sorting process. Vice versa, a “necklace” of three cucurbit[8]urils is formed, which bind two complementary axles inside their cavities with high fidelity.
In order to investigate molecular recognition on surfaces, an azide-functionalized monolayer was deposited on gold. The monolayer was characterized by X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) experiments and the decomposition of the azide upon irradiation with X-ray beams was investigated. Subsequently, various alkynefunctionalized host and guest molecules were attached to the azide by 1,3-dipolar cycloaddition. These modified surfaces and their host-guest chemistry were analysed by XPS and angle-resolved NEXAFS.The reversibility of guest binding was shown for one example as a proof of principle.
The LANCA three-component reaction of lithiated alkoxyallenes (LA), nitriles (N), and carboxylic acids (CA) smoothly provides β-alkoxy-β-ketoenamides in broad structural variety. The subsequent cyclocondensation of these compounds with hydroxylamine hydrochloride afforded a large library of pyrimidine N-oxides under mild conditions and in good yields. Their synthetic utility was further increased by the Boekelheide rearrangement leading to 4-acetoxymethyl-substituted pyrimidines. With trifluoroacetic anhydride the rearrangement proceeds even at room temperature and directly furnishes 4-hydroxymethyl-substituted pyrimidine derivatives. The key reactions are very robust and work well even in the presence of sterically demanding substituents.
In this report we describe the synthesis of differentially functionalized pyridine derivatives 3 and the related 3-bromosubstituted pyridines 11. Dissociation of 6H-1,2-oxazine precursors (1a, 1b, 5, 6, or 12) in situ, mediated by boron trifluoride-diethyl ether, generates the azapyrylium intermediates A, which undergo hetero-Diels-Alder reactions with various mono-and disubstituted alkynes 2. In general, these pyridine syntheses proceeded with high efficiencies and were very flexible with respect to all positions in the pyridine cores. For the 3-phenyl-substituted pyridine derivatives 3a-3j and 11a-11f the best results were obtained by a new microwave-assisted protocol, which is clearly superior to the previously used conventional procedure at low temperature in dichloro-
The formation of singly, doubly and triply threaded pseudo[2]rotaxanes with diketopiperazine threads and tetralactam wheels is investigated with respect to chelate cooperativity effects on multivalent binding. Two series of guest molecules are prepared which differ with respect to their spacers, one with preorganised centrepieces with di- or tripodal roof-like structures, one with more flexible spacers. The thermodynamics of pseudorotaxane formation is examined using isothermal titration calorimetry and (1)H NMR spectroscopy. Force-field calculations provide more detailed structural insight and help rationalizing the thermodynamic data. All di- and trivalent pseudorotaxanes exhibit positive chelate cooperativity presumably arising from spacer-spacer interactions. Higher cooperativity factors are observed for the more preorganised threads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.