We describe a LED-based stroboscopic white-light interferometer and a data analysis method that allow mapping out-of-plane surface vibration fields in electrically excited microstructures with sub-nm amplitude resolution for vibration frequencies ranging up to tens of MHz. The data analysis, which is performed entirely in the frequency domain, makes use of the high resolution available in the measured interferometric phase data. For demonstration, we image the surface vibration fields in a square-plate silicon MEMS resonator for three vibration modes ranging in frequency between 3 and 14 MHz. The minimum detectable vibration amplitude in this case was less than 100 pm.
We have studied the excitation of higher-order modes and their role in supercontinuum generation in a three-hole silica suspended-core fiber, both experimentally and numerically. We find that pump coupling optimized to highest transmission can yield substantial excitation of higher order modes. With up to about 40% of the pump power coupled to higher order modes, we have studied supercontinuum generation in this fiber. In agreement with experiments, simulation results based on the multimode generalized nonlinear Schrödinger equation confirm that the spectral width is determined by spectral broadening in the fundamental mode, whereas the numerical analysis reveals that intermodal nonlinear interactions are strongly suppressed.
We present the design of a fiber-optic gas refractometer that enables spectrally resolved measurements of both real and imaginary parts of the complex refractive index. The proposed concept is based on a Mach-Zehnder-type interferometer with a hollow-core photonic bandgap fiber in one of the interferometer’s arms. The fiber is used simultaneously as an optical waveguide and an analyte containing cell. We demonstrate the performance of the device by measuring the complete complex refractive index of an air-acetylene gas mixture within the optical C-band. The introduced concept leads towards versatile applications in optics as well as atomic and molecular physics.
We present an approach for numerically solving the multimode generalized nonlinear Schrödinger equation (MM-GNLSE). We propose to transform the MM-GNLSE to a system of first-order ordinary differential equations (ODEs) that can then be solved using readily available ODE solvers, thus making modeling of pulse propagation in multimode fibers easier. The solver is verified for the simplest multimode case in which only the two orthogonal polarization states in a non-birefringent microstructured optical fiber are involved. Also, the nonlinear dynamics of the degree and state of spectral polarization are presented for this case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.