Crack formation drives material failure and is often regarded as a process to be avoided. However, closer examination of cracking phenomena has revealed exquisitely intricate patterns such as spirals, oscillating and branched fracture paths and fractal geometries. Here we demonstrate the controlled initiation, propagation and termination of a variety of channelled crack patterns in a film/substrate system comprising a silicon nitride thin film deposited on a silicon substrate using low-pressure chemical vapour deposition. Micro-notches etched into the silicon substrate concentrated stress for crack initiation, which occurred spontaneously during deposition of the silicon nitride layer. We reproducibly created three distinct crack morphologies--straight, oscillatory and orderly bifurcated (stitchlike)--through careful selection of processing conditions and parameters. We induced direction changes by changing the system parameters, and we terminated propagation at pre-formed multi-step crack stops. We believe that our patterning technique presents new opportunities in nanofabrication and offers a starting point for atomic-scale pattern formation, which would be difficult even with current state-of-the-art nanofabrication methodologies.
The spin parameter of the black hole in M33 X-7 has recently been measured to be . It has a p 0.77 ע 0.05 been proposed that the spin of the 15.65 black hole is natal. We show that this is not a viable evolutionary M , path given the observed binary orbital period of 3.45 days since the explosion that would produce a black hole with the cited spin parameter and orbital period would disrupt the binary. Furthermore, we show that the system has to be evolved through the hypercritical mass transfer of ∼5 from the secondary star to the black hole. M ,
The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment successfully recorded data for 539 days from 2017 August to 2019 February. We report the energy spectrum of cosmic-ray protons from the ISS-CREAM experiment at energies from 1.60 × 103 to 6.55 × 105 GeV. The measured spectrum deviates from a single power law. A smoothly broken power-law fit to the data, including statistical and systematic uncertainties, shows the spectral index change at 9.0 × 103 GeV from 2.57 ± 0.03 to 2.82 ± 0.02 with a significance of greater than 3σ. This bump-like structure is consistent with a spectral softening recently reported by the balloon-borne CREAM, DAMPE, and NUCLEON, but ISS-CREAM extends measurements to higher energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.