The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.
We here show that the activity of the immunoproteasome is impaired by cigarette smoke resulting in reduced MHC I antigen presentation. Regulation of immunoproteasome function by cigarette smoke may thus alter adaptive immune responses and add to prolonged infections and exacerbations in COPD and IPF.
The proteasome is a central regulatory hub for intracellular signaling by degrading numerous signaling mediators. Immunoproteasomes are specialized types of proteasomes involved in shaping adaptive immune responses, but their role in innate immune signaling is still elusive. Here, we analyzed immunoproteasome function for polarization of alveolar macrophages, highly specialized tissue macrophages of the alveolar lung surface. Classical activation (M1 polarization) of primary alveolar macrophages by LPS/IFNγ transcriptionally induced all three immunoproteasome subunits, low molecular mass protein 2 (LMP2), LMP7 and multicatalytic endopeptidase complex-like 1, which was accompanied by increased immunoproteasome activity in M1 cells. Deficiency of LMP7 had no effect on the LPS/IFNγ-triggered M1 profile indicating that immunoproteasome function is dispensable for classical alveolar macrophage activation. In contrast, IL-4 triggered alternative (M2) activation of primary alveolar macrophages was accompanied by a transcriptionally independent amplified expression of LMP2 and LMP7 and an increase in immunoproteasome activity. Alveolar macrophages from LMP7 knockout mice disclosed a distorted M2 profile upon IL-4 stimulation as characterized by increased M2 marker gene expression and CCL17 cytokine release. Comparative transcriptome analysis revealed enrichment of IL-4-responsive genes and of genes involved in cellular response to defense, wounding and inflammation in LMP7-deficient alveolar macrophages indicating a distinct M2 inflammation resolving phenotype. Moreover, augmented M2 polarization was accompanied by amplified AKT/STAT6 activation and increased RNA and protein expression of the M2 master transcription factor interferon regulatory factor 4 in LMP7 − / − alveolar macrophages. IL-13 stimulation of LMP7-deficient macrophages induced a similar M2-skewed profile indicative for augmented signaling via the IL-4 receptor α (IL4Rα). IL4Rα expression was generally elevated only on protein but not RNA level in LMP7 − / − alveolar macrophages. Importantly, specific catalytic inhibition with an LMP7-specific proteasome inhibitor confirmed augmented IL-4-mediated M2 polarization of alveolar macrophages. Our results thus suggest a novel role of immunoproteasome function for regulating alternative activation of macrophages by limiting IL4Rα expression and signaling. The immunoproteasome is a specialized type of proteasome and constitutively active in immune cells, whereas standard proteasomes are expressed in all non-immune cells. Similar to the standard 20S proteasome, immunoproteasomes are composed of two outer α-rings and two inner β-rings of seven subunits each 1 but contain a different set of IFNγ-inducible
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.