The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
The fragmentation of populations is an increasingly important problem in the conservation of endangered species. Under these conditions, rare migration events may have important effects for the rescue of small and inbred populations. However, the relevance of such migration events to genetically depauperate natural populations is not supported by empirical data. We show here that the genetic diversity of the severely bottlenecked and geographically isolated Scandinavian population of grey wolves (Canis lupus), founded by only two individuals, was recovered by the arrival of a single immigrant. Before the arrival of this immigrant, for several generations the population comprised only a single breeding pack, necessarily involving matings between close relatives and resulting in a subsequent decline in individual heterozygosity. With the arrival of just a single immigrant, there is evidence of increased heterozygosity, signi cant outbreeding (inbreeding avoidance), a rapid spread of new alleles and exponential population growth. Our results imply that even rare interpopulation migration can lead to the rescue and recovery of isolated and endangered natural populations.
Movement data provide a window - often our only window - into the cognitive, social and biological processes that underlie the behavioural ecology of animals in the wild. Robust methods for identifying and interpreting distinct modes of movement behaviour are of great importance, but complicated by the fact that movement data are complex, multivariate and dependent. Many different approaches to exploratory analysis of movement have been developed to answer similar questions, and practitioners are often at a loss for how to choose an appropriate tool for a specific question. We apply and compare four methodological approaches: first passage time (FPT), Bayesian partitioning of Markov models (BPMM), behavioural change point analysis (BCPA) and a fitted multistate random walk (MRW) to three simulated tracks and two animal trajectories - a sea lamprey (Petromyzon marinus) tracked for 12 h and a wolf (Canis lupus) tracked for 1 year. The simulations - in which, respectively, velocity, tortuosity and spatial bias change - highlight the sensitivity of all methods to model misspecification. Methods that do not account for autocorrelation in the movement variables lead to spurious change points, while methods that do not account for spatial bias completely miss changes in orientation. When applied to the animal data, the methods broadly agree on the structure of the movement behaviours. Important discrepancies, however, reflect differences in the assumptions and nature of the outputs. Important trade-offs are between the strength of the a priori assumptions (low in BCPA, high in MRW), complexity of output (high in the BCPA, low in the BPMM and MRW) and explanatory potential (highest in the MRW). The animal track analysis suggests some general principles for the exploratory analysis of movement data, including ways to exploit the strengths of the various methods. We argue for close and detailed exploratory analysis of movement before fitting complex movement models.
We propose a fundamental geographic distribution for the wolverine ( Gulo gulo (L., 1758)) based on the hypothesis that the occurrence of wolverines is constrained by their obligate association with persistent spring snow cover for successful reproductive denning and by an upper limit of thermoneutrality. To investigate this hypothesis, we developed a composite of MODIS classified satellite images representing persistent snow cover from 24 April to 15 May, which encompasses the end of the wolverine’s reproductive denning period. To investigate the wolverine’s spatial relationship with average maximum August temperatures, we used interpolated temperature maps. We then compared and correlated these climatic factors with spatially referenced data on wolverine den sites and telemetry locations from North America and Fennoscandia, and our contemporary understanding of the wolverine’s circumboreal range. All 562 reproductive dens from Fennoscandia and North America occurred at sites with persistent spring snow cover. Ninety-five percent of summer and 86% of winter telemetry locations were concordant with spring snow coverage. Average maximum August temperature was a less effective predictor of wolverine presence, although wolverines preferred summer temperatures lower than those available. Reductions in spring snow cover associated with climatic warming will likely reduce the extent of wolverine habitat, with an associated loss of connectivity.
Aim We aimed to describe the large-scale patterns in population density of roe deer Caprelous capreolus in Europe and to determine the factors shaping variation in their abundance. Location Europe.Methods We collated data on roe deer population density from 72 localities spanning 25°latitude and 48°longitude and analysed them in relation to a range of environmental factors: vegetation productivity (approximated by the fraction of photosynthetically active radiation) and forest cover as proxies for food supply, winter severity, summer drought and presence or absence of large predators (wolf, Canis lupus, and Eurasian lynx, Lynx lynx), hunter harvest and a competitor (red deer, Cervus elaphus). ResultsRoe deer abundance increased with the overall productivity of vegetation cover and with lower forest cover (sparser forest cover means that a higher proportion of overall plant productivity is allocated to ground vegetation and thus is available to roe deer). The effect of large predators was relatively weak in highly productive environments and in regions with mild climate, but increased markedly in regions with low vegetation productivity and harsh winters. Other potentially limiting factors (hunting, summer drought and competition with red deer) had no significant impact on roe deer abundance. Main conclusionsThe analyses revealed the combined effect of bottom-up and top-down control on roe deer: on a biogeographical scale, population abundance of roe deer has been shaped by food-related factors and large predators, with additive effects of the two species of predators. The results have implications for management of roe deer populations in Europe. First, an increase in roe deer abundance can be expected as environmental productivity increases due to climate change. Secondly, recovery plans for large carnivores should take environmental productivity and winter severity into account when predicting their impact on prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.