Summary The molecular complexity of the bone marrow (BM) microenvironment and its response to stress are incompletely understood, despite its key role in the regulation of hematopoiesis. Here we map the transcriptional landscape of BM vascular, perivascular, and osteoblast niche populations at single-cell resolution at both homeostasis and under stress hematopoiesis. This analysis revealed a previously unappreciated level of cellular heterogeneity within the BM niche, identified novel cellular subsets, and resolved cellular sources of pro-hematopoietic growth factors, chemokines, and membrane-bound ligands. Under conditions of stress, our studies revealed a significant transcriptional remodeling of these niche elements, including an adipocytic skewing of the perivascular cells. Among the stress-induced changes, we observed that vascular Notch ligand delta-like ligands (Dll1,4) were downregulated. In the absence of vascular Dll4, hematopoietic stem cells (HSC) prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the BM niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress, and illustrate the utility of single cell transcriptomic data in systematically evaluating the regulation of hematopoiesis by discrete niche populations.
The cellular inhibitor of apoptosis cIAP1 and −2 are amplified in about 3% of cancers, and were identified in multiple malignancies as potential therapeutic targets due to their role in evasion of apoptosis. Consequently, small molecule IAP antagonists, like LCL161, have entered clinical trials for their ability to induce TNF-mediated apoptosis of cancer cells. However, cIAP1 and −2 are recurrently homozygously deleted in multiple myeloma resulting in constitutive activation of the non-canonical NFkB pathway. It was therefore counterintuitive to observe a robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and patients with relapsed-refractory myeloma, where addition of cyclophosphamide resulted in a median progression free survival of 10 months. This effect is not due to direct induction of tumor cell death, but rather to upregulation of a tumor cell autonomous type I interferon signaling and a strong inflammatory response with activation of macrophages and dendritic cells resulting in phagocytosis of tumor cells. Treatment with LCL161 established long-term anti-tumor protection and cure in a fraction of transgenic Vk*MYC mice. Remarkably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all treated mice.
Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.
Recent successes in immune therapeutic strategies aimed to improve control over tumor growth have sparked hope that long-lived control of cancer through stimulation of the immune system can be possible. However, the underlying immunological mechanisms that are induced by immunotherapeutic strategies are not well understood. In this study, we used the highly immunogenic Friend virus–induced FBL-3 tumor as a model to study the mechanisms of immunological tumor control by CD4+ T cells in the course of CD137 (4-1BB) agonist immunotherapy in the absence of a CD8 T cell response. We demonstrate that treatment with a CD137 agonist resulted in complete FBL-3 tumor regression in CD8+ T cell–deficient mice. CD137 signaling enhanced the production of proinflammatory cytokines and cytotoxic molecules in tumor-specific CD4+ T cells. Interestingly, a subset of CD4+Foxp3+ regulatory T cells was reprogrammed to eliminate immunogenic virus-induced tumor cells in response to CD137 agonist treatment. These cells expressed markers characteristic for Th cells (CD154) and produced the cytokine TNF-α or the T-box transcriptional factor Eomesodermin and granzyme B without loss of Foxp3 expression. Foxp3 Eomes double-positive CD4+ T cells were capable of eliminating immunogenic virus-induced tumor cells in vivo. Thus, our data show that tumor-induced Foxp3+CD4+ T cells can be reprogrammed into cytotoxic effector cells upon therapeutic costimulatory signaling and restore antitumor immunity.
The canonical plasma cell marker CD138 (syndecan-1) is highly expressed on the myeloma cell surface, but its functional role in vivo is unclear, as well as the ontogeny of CD138-high and CD138-negative (neg) myeloma cells. In this study we used an in vivo murine Vk*MYC myeloma model where CD138 is heterogeneously expressed depending on tumor size. We find that in comparison to CD138-neg myeloma cells, the CD138-high subset of myeloma cells is highly proliferative, less apoptotic, and enhanced IL-6R signaling, which is known to promote survival. In addition CD138-high myeloma engrafts better than its CD138-neg counterpart. In contrast, CD138-neg cells are more motile both in vitro and in vivo, and more readily disseminate and spread to other bones in vivo than CD138-high subset. Neutralizing CD138 rapidly triggers migration of myeloma cells in vivo and leads to intravasation, which results in increased dissemination to other bones. Both murine and human myeloma cells can rapidly recycle CD138 surface expression through endocytic trafficking, in response to serum levels. Blocking CD138 enhances myeloma sensitivity to bortezomib chemotherapy and significantly reduces tumor size compared to bortezomib treatment alone. Thus, our data show that CD138 surface expression dynamically regulates a switch between growth vs. dissemination for myeloma, in response to nutrient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.