BACKGROUND Environmental concerns are driving the call for adoption of alternative nonchemical weeding approaches. This study aimed to develop and evaluate a novel, precise, low‐energy electrophysical treatment weeding systems and to provide new insight into their control mechanism. Two electrophysical treatment systems, based on AC (2.2 kV) and DC (40 kV) energy sources, were developed and evaluated. The impacts of various operational and biological factors on the weed control effectiveness were evaluated. Additionally, thermal images were taken during the treatments to document plant temperature. RESULTS Treatments via direct leaf contact caused greater damage to Amaranth plants than the stem contact treatments, with 75% and 20% biomass reduction compared to control, respectively. Treatment of early growth stages was favorable over later growth stages, with 100% and 75% biomass reduction for Trifolium pretense plants treated with 0.0125 W h 2 and 4 weeks after seeding, respectively, compared to control. Additionally, the applied energy affected treatment performance, with its impact varying across the growth stages and species; at the two‐leaf growth stage, 0.0025 W h treatment was sufficient for plant death. A >40 °C increase in plant temperature was measured during the electrophysical treatment, with the temperature of some plant organs reaching ~70 °C. CONCLUSION Results from this study demonstrate the potential use of electrophysical treatment as an effective weed control tool. The low energetic demands in the new systems provide suitable control results when applied at early stages. Temperature increase seemed to be one of the main control factors, yet efficacy was affected by various biological factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.