Particulate matter (PM) causes several diseases, including cardiovascular diseases (CVDs). Previous studies compared the gene expression patterns in airway epithelial cells and keratinocytes exposed to PM. However, analysis of differentially expressed gene (DEGs) in endothelial cells exposed to PM2.5 (diameter less than 2.5 μm) from fossil fuel combustion has been limited. Here, we exposed human umbilical vein endothelial cells (HUVECs) to PM2.5 from combustion of gasoline, performed RNA-seq analysis, and identified DEGs. Exposure to the IC50 concentrations of gasoline engine exhaust PM2.5 (GPM) for 24 h yielded 1081 (up-regulation: 446, down-regulation: 635) DEGs. The most highly up-regulated gene is NGFR followed by ADM2 and NUPR1 . The most highly down-regulated gene is TNFSF10 followed by GDF3 and EDN1 . Gene Ontology enrichment analysis revealed that GPM regulated genes involved in cardiovascular system development, tube development and circulatory system development. Kyoto Encyclopedia of Genes and Genomes and Reactome pathway analyses showed that genes related to cytokine–cytokine receptor interactions and cytokine signaling in the immune system were significantly affected by GPM. We confirmed the RNA-seq data of some highly altered genes by qRT-PCR and showed the induction of NGFR, ADM2 and IL-11 at a protein level, indicating that the observed gene expression patterns were reliable. Given the adverse effects of PM2.5 on CVDs, our findings provide new insight into the importance of several DEGs and pathways in GPM-induced CVDs.
Diesel exhaust particles (DEP) are risk factors for endothelial cells (ECs) dysfunction. However, the mechanism by which DEP induce ECs apoptosis remains unclear. Here, we investigated how DEP induce death of human umbilical vein ECs (HUVECs), with a focus on the autophagy-mediated apoptotic pathway. DEP induced dose-dependent HUVECs death and exposure to the IC50 concentration of DEP (70 µg/ml) led to apoptosis. DEP phosphorylated Beclin-1 (Ser93) and increased protein levels of p62 and LC3BII and the number of LC3B puncta, indicating autophagy initiation. DEP increased expression of pro- and mature forms of cathepsin D, which increases lysosomal activity. However, DEP suppressed expression of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins (STX17, VAMP8, SNAP29, YKT6, and STX7) to inhibit autolysosome formation, resulting in accumulation of autophagosomes. LC3B, p62, and caspase-8 form a tertiary complex in accumulated autophagosomes, which is known to serve as a platform for caspase-8 activation. Indeed, DEP activates caspase-8 and pretreatment with a caspase-8 inhibitor suppressed DEP-induced apoptosis. Furthermore, depletion of p62 decreased caspase-8 and caspase-3 activation and inhibited the DEP-induced apoptosis. Taken together, these findings demonstrated that DEP induced HUVECs apoptosis by inhibiting autophagosome maturation and identified caspase-8 as a novel mediator of DEP-induced ECs apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.