Abstract. Transformation of isoprene coupled with autooxidation of S IV in aqueous solutions was studied experimentally and by chemical-kinetic modelling over a broad range of solution acidities (pH=3-9) to complement the research on aqueous-phase and heterogeneous transformation of isoprene reported recently by many laboratories. Isoprene significantly slowed down the auto-oxidation in acidic and basic solutions, and accelerated it slightly in neutral solutions. Simultaneously, production of sulphate ions and formation of solution acidity were significantly reduced. Formation of sulphite and sulphate derivatives of isoprene -sulphurous acid mono-(2-methyl-4-oxo-but-2-enyl) ester (m/z=163), sulphurous acid mono-(4-hydroxy-2-methyl-but-2-enyl) ester (m/z=165), sulphuric acid mono-(2-methyl-4-oxo-but-2-enyl) ester (m/z=179), sulphuric acid mono-(4-hydroxy-2-methyl-but-2-enyl) ester (m/z=181), and possible structural isomers of these species -was indicated by electrospray ionisation mass spectrometric analysis of postreaction mixtures. The experimental results were explained by changes in a subtle quantitative balance of three superimposed processes whose rates depended in different manner on the acidity of reacting solutions -the scavenging of sulphoxy radical-anions by isoprene, the formation of sulphoxy radical-anions during further reactions of isoprene radicals, and the auto-oxidation of S IV itself. A chemical mechanism based on this idea was explored numerically to show good agreement with experimental data. In basic and neutral solutions, the model overestimated the consumption of isoprene, probably because reactions of primary sulphite and sulphate derivatives of isoprene with sulphoxy radical-anions were not included. Interaction of isoprene Correspondence to: K. J. Rudziński (kjrudz@ichf.edu.pl) with sulphur(IV) species and oxygen can possibly result in formation of new organosulphate and organosulphite components of atmospheric aerosols and waters, and influence the distribution of reactive sulphur and oxygen species in isoprene-emitting organisms exposed to S IV pollutants.
The relevance of this study lied in actualising the issue of increasing the level of social consolidation of Ukrainian society under the conditions of a number of political, economic, social, and cultural transformations. Intangible cultural heritage serves as the main resource for the establishment and development of national consciousness, which, in turn, strengthens integration processes within society. The purpose of the study is to prove the value of intangible cultural heritage in the modern life of Ukrainians and substantiate the need to preserve cultural values in the course of historical development as a powerful ethno-unifying factor. In the course of the study, general scientific methods, namely analysis, synthesis, induction, deduction, systematic, and comparative were used for logical and consistent presentation of the material. A critical approach to information allowed comprehensively and thoroughly examining the issue of cultural heritage as a unifying factor. As a result of the study, it was discovered that due to complex socio-political and globalisation processes, there is still a need to preserve the traditional heritage, which is an indicator of cultural independence, proving the uniqueness and originality of each nation. Therefore, in the course of the technologisation of society.
Abstract. Transformation of isoprene coupled with autoxidation of SIV in aqueous solutions was studied experimentally and by chemical-kinetic modelling over broad range of solution acidities (pH=3–9) to complement the research on aqueous-phase and heterogeneous transformation of isoprene reported recently by many laboratories. Isoprene significantly slowed down the autoxidation in acidic and basic solutions, and accelerated it slightly in neutral solutions. Simultaneously, production of sulphate ions and formation of solution acidity were significantly reduced. Formation of sulphite and sulphate derivatives of isoprene – sulphurous acid mono-(2-methyl-4-oxo-but-2-enyl) ester (m/z=162.9), sulphurous acid mono-(4-hydroxy-2-methyl-but-2-enyl) ester (m/z=164.9), sulphuric acid mono-(2-methyl-4-oxo-but-2-enyl) ester (m/z=178.9), sulphuric acid mono-(4-hydroxy-2-methyl-but-2-enyl) ester (m/z=180.9) – was indicated by mass spectroscopic analysis of post-reaction mixtures. The results of experiments were explained by changes in a subtle quantitative balance of three superimposed processes whose rates depended in different manner on the acidity of reacting solutions – the scavenging of sulphoxy radicals by isoprene, the formation of sulphoxy radicals during further reactions of isoprene radicals, and the autoxidation of SIV itself. A chemical mechanism based on this idea was explored numerically to show good agreement with experimental data. Interaction of isoprene with sulphur(IV) species and oxygen can possibly result in formation of new organosulphate components of atmospheric aerosols and waters, and influence distribution of reactive sulphur and oxygen species in isoprene-emitting organisms exposed to SIV pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.