A major part of the burden of asthma is caused by acute exacerbations. Exacerbations have been strongly and consistently associated with respiratory infections. Respiratory viruses and bacteria are therefore possible treatment targets. To have a reasonable estimate of the burden of disease induced by such infectious agents on asthmatic patients, it is necessary to understand their nature and be able to identify them in clinical samples by employing accurate and sensitive methodologies. This systematic review summarizes current knowledge and developments in infection epidemiology of acute asthma in children and adults, describing the known impact for each individual agent and highlighting knowledge gaps. Among infectious agents, human rhinoviruses are the most prevalent in regard to asthma exacerbations. The newly identified type-C rhinoviruses may prove to be particularly relevant. Respiratory syncytial virus and metapneumovirus are important in infants, while influenza viruses seem to induce severe exacerbations mostly in adults. Other agents are relatively less or not clearly associated. Mycoplasma and Chlamydophila pneumoniae seem to be involved more with asthma persistence rather than with disease exacerbations. Recent data suggest that common bacteria may also be involved, but this should be confirmed. Although current information is considerable, improvements in detection methodologies, as well as the wide variation in respect to location, time and populations, underline the need for additional studies that should also take into account interacting factors.
Bioactive glasses dissolve upon immersion in culture medium, and release their constitutive ions into solution. There has been some evidence suggesting that these ionic-dissolution products influence osteoblast-specific processes. Here, the effect of 58S sol-gel-derived bioactive glass (60% SiO(2), 36% CaO, 4% P(2)O(5), in molar percentage) on primary osteoblasts derived from human fetal long bone explant cultures is investigated, and it is hypothesized that critical concentrations of sol-gel-dissolution products (consisting of a combination of simple inorganic ions) can enhance osteoblast phenotype in vitro by affecting the expression of a number of genes associated with the differentiation and extracellular matrix deposition processes. Cells were exposed to a range of 58S dosages continuously for a period of 4-14 days in monolayer cultures. Quantitative real-time RT-PCR analysis of a panel of osteoblast-specific markers showed a varied gene expression pattern in response to the material. The highest concentration of Ca and Si tested (96 and 50 ppm, respectively) promoted upregulation of gene expression for most markers (including alkaline phosphatase, osteocalcin, and osteopontin) at the latest time point, compared to non-58S-treated control, although this observation was not statistically significant. The same 58S concentration produced higher ALP activity levels and increased proliferation throughout the culture period, compared to lower dosages tested; however, the results generated were again not statistically significant. The data overall suggest that no significant effect can be ascribed to the ionic products of 58S bioactive gel-glass dissolution tested here and their ability to stimulate osteoblastic marker gene expression.
Mesenchymal stem cells (MSCs) are somatic cells with a dual capacity for self-renewal and differentiation, and diverse therapeutic applicability, both experimentally and in the clinic. These cells can be isolated from various human tissues that may differ anatomically or developmentally with relative ease. Heterogeneity due to biological origin or in vitro manipulation is, nevertheless, considerable and may equate to differences in qualitative and quantitative characteristics which can prove crucial for successful therapeutic use. With this in mind, in the present study we have evaluated the proliferation kinetics and phenotypic characteristics of MSCs derived from two abundant sources, that is, fetal umbilical cord matrix (Wharton's jelly) and adult adipose tissue (termed WJSC and ADSC, resp.) during prolonged in vitro expansion, a process necessary for obtaining cell numbers sufficient for clinical application. Our results show that WJSC are derived with relatively high efficiency and bear a substantially increased proliferation capacity whilst largely sustaining the expression of typical immunophenotypic markers, whereas ADSC exhibit a reduced proliferation potential showing typical signs of senescence at an early stage. By combining kinetic with phenotypic data we identify culture thresholds up to which both cell types maintain their stem properties, and we discuss the practical implications of their differences.
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-1078-8) contains supplementary material, which is available to authorized users.
BUD and FORM suppress RV-induced chemokines and growth factors in bronchial epithelial cells in a concentration-dependent, synergistic or additive manner. These data further support the combined use of BUD and FORM in asthma and COPD and intensification of this therapy during exacerbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.