The SARS-CoV-2 Spike protein mediates docking of the virus onto cells prior to viral invasion. Several cellular receptors facilitate SARS-CoV-2 Spike docking at the cell surface, of which ACE2 plays a key role in many cell types. The intermediate filament protein vimentin has been reported to be present at the surface of certain cells and act as a co-receptor for several viruses; furthermore, its potential involvement in interactions with Spike proteins has been proposed. Nevertheless, the potential colocalization of vimentin with Spike and its receptors on the cell surface has not been explored. Here we have assessed the binding of Spike protein constructs to several cell types. Incubation of cells with tagged Spike S or Spike S1 subunit led to discrete dotted patterns at the cell surface, which consistently colocalized with endogenous ACE2, but sparsely with a lipid raft marker. Vimentin immunoreactivity mostly appeared as spots or patches unevenly distributed at the surface of diverse cell types. Of note, vimentin could also be detected in extracellular particles and in the cytoplasm underlying areas of compromised plasma membrane. Interestingly, although overall colocalization of vimentin-positive spots with ACE2 or Spike was moderate, a selective enrichment of the three proteins was detected at elongated structures, positive for acetylated tubulin and ARL13B. These structures, consistent with primary cilia, concentrated Spike binding at the top of the cells. Our results suggest that a vimentin-Spike interaction could occur at selective locations of the cell surface, including ciliated structures, which can act as platforms for SARS-CoV-2 docking.
The Spike protein from SARS-CoV-2 mediates docking of the virus onto cells and contributes to viral invasion. Several cellular receptors are involved in SARS-CoV-2 Spike docking at the cell surface, including ACE2 and neuropilin. The intermediate filament protein vimentin has been reported to be present at the surface of certain cells and act as a co-receptor for several viruses; furthermore, its potential involvement in interactions with Spike proteins has been proposed. Here we have explored the binding of Spike protein constructs to several cell types using low-temperature immunofluorescence approaches in live cells, to minimize internalization. Incubation of cells with tagged Spike S or Spike S1 subunit led to discrete dotted patterns at the cell surface, which showed scarce colocalization with a lipid raft marker, but consistent coincidence with ACE2. Under our conditions, vimentin immunoreactivity appeared as spots or patches unevenly distributed at the surface of diverse cell types. Remarkably, several observations including potential antibody internalization and adherence to cells of vimentin-positive structures present in the extracellular medium exposed the complexity of vimentin cell surface immunoreactivity, which requires careful assessment. Notably, overall colocalization of Spike and vimentin signals markedly varied with the cell type and the immunodetection sequence. In turn, vimentin-positive spots moderately colocalized with ACE2; however, a particular enrichment was detected at elongated structures positive for acetylated tubulin, consistent with primary cilia, which also showed Spike binding. Thus, these results suggest that vimentin-ACE2 interaction could occur at selective locations near the cell surface, including ciliated structures, which can act as platforms for SARS-CoV-2 docking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.