This research provides an insight on the performances of machine learning (ML)-based algorithms for the estimation of the energy consumption in metal forming processes and is applied to the radial-axial ring rolling process. To define the mutual influence between ring geometry, process settings, and ring rolling mill geometries with the resulting energy consumption, measured in terms of the force integral over the processing time (FIOT), FEM simulations have been implemented in the commercial SW Simufact Forming 15. A total of 380 finite element simulations with rings ranging from 650 mm < DF < 2000 mm have been implemented and constitute the bulk of the training and validation datasets. Both finite element simulation settings (input), as well as the FI (output), have been utilized for the training of eight machine learning models, implemented with Python scripts. The results allow defining that the Gradient Boosting (GB) method is the most reliable for the FIOT prediction in forming processes, being its maximum and average errors equal to 9.03% and 3.18%, respectively. The trained ML models have been also applied to own and literature experimental cases, showing a maximum and average error equal to 8.00% and 5.70%, respectively, thus proving once again its reliability.
Energy prediction and starvation have become an essential part of process planning for the XXI century manufacturing industry due to cost-saving policies and environmental regulations. To this aim, the research presented in this paper details how machine learning-based algorithms can be an effective way to predict and minimize the energy consumptions in the widely spread radial-axial ring rolling (RARR) process. To analyze this bulk metal forming process, 380 numerical simulations have been developed using the commercial SW Simufact Forming 15 and considering three largely utilized materials, the 42CrMo4 steel, the IN 718 superalloy, and the AA6082 aluminum alloy. To create the database for both multi-variable regression and machine learning models, ring outer diameters ranging from 650 mm to 2000 mm and various process conditions including different sets of tool speeds and initial temperatures have been considered. For the case of the multi-variable regression model, to account for all the cross-influences between all the parameters, a second-order function including 26 parameters has been developed, resulting in a reasonable average accuracy (94 %) but also in an impractical huge equation. On the other hand, the machine learning model based on the Gradient Boosting (GB) approach allows obtaining a similar accuracy (96 %) but its compact form allows a more practical utilization and its training can be expanded almost indefinitely, by adding more results from both numerical simulations and experiments. The proposed approach allows to quickly and precisely predict the energy consumption in the RARR process and can be extended to other manufacturing processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.