Members of the abscisic acid-responsive element binding protein (AREB)/abscisic acid-responsive element binding factor (ABF) subfamily of basic leucine zipper (bZIP) transcription factors have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. Here we describe two members identified in cultivated tomato (Solanum lycopersicum), named SlAREB1 and SlAREB2. Expression of SlAREB1 and SlAREB2 is induced by drought and salinity in both leaves and root tissues, although that of SlAREB1 was more affected. In stress assays, SlAREB1-overexpressing transgenic tomato plants showed increased tolerance to salt and water stress compared to wild-type and SlAREB1-down-regulating transgenic plants, as assessed by physiological parameters such as relative water content (RWC), chlorophyll fluorescence and damage by lipoperoxidation. In order to identify SlAREB1 target genes responsible for the enhanced tolerance, microarray and cDNA-amplified fragment length polymorphism (AFLP) analyses were performed. Genes encoding oxidative stress-related proteins, lipid transfer proteins (LTPs), transcription regulators and late embryogenesis abundant proteins were found among the up-regulated genes in SlAREB1-overexpressing lines, especially in aerial tissue. Notably, several genes encoding defence proteins associated with responses to biotic stress (e.g. pathogenesis-related proteins, protease inhibitors, and catabolic enzymes) were also up-regulated by SlAREB1 overexpression, suggesting that this bZIP transcription factor is involved in ABA signals that participate in abiotic stress and possibly in response to pathogens.
Wild relatives of cultivated tomato (Solanum lycopersicum) are resistant to a wide range of abiotic and biotic stress conditions. In an effort to understand the molecular mechanisms of salt stress resistance in the wild and cultivated Solanum species, a basic leucine zipper (bZIP) transcription factor was identified in S. chilense, S. peruvianum and S. lycopersicum and named ScAREB1, SpAREB1 and SlAREB1, respectively. Deduced amino acid sequences of the three proteins are 97% identical among them and present high homology with the ABF/AREB subfamily of transcription factors described in different plant species, including Arabidopsis (ABF2, 54% identical) and tobacco (PHI-2, 50% identical). Expression of these orthologous genes is upregulated similarly in the three species by salt stress. The expression of SlAREB1 was further investigated in S. lycopersicum and found to be induced by drought, cold and abscisic acid. To investigate the possible role of this transcription factor in response to abiotic stress, a simple transient expression assay was used for rapid analysis of genes regulated by SlAREB1 in tomato and tobacco by means of Agrobacterium-mediated transformation. Tobacco leaves expressing SlAREB1 showed upregulation of stress-responsive genes such as RD29B, the LEA genes ERD10B and TAS14, the transcription factor PHI-2 and a trehalose-6-phosphate phosphatase gene. These results suggest that this class of bZIP plays a role in abiotic stress response in the Solanum genus.
Summary Root‐knot nematodes (RKNs; Meloidogyne spp.) induce new post‐embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT‐ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL‐RELATED‐HOMEOBOX‐5/WOX5, AUXIN‐RESPONSIVE‐FACTOR‐5/ARF5, ARABIDOPSIS‐HISTIDINE PHOSPHOTRANSFER‐PROTEIN‐6/AHP6, GATA‐TRANSCRIPTION FACTOR‐23/GATA23 and S‐PHASE‐KINASE‐ASSOCIATED‐PROTEIN2B/SKP2B, were analysed for nematode‐dependent expression. Their corresponding loss‐of‐function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE‐3‐ACETIC‐ACID‐INDUCIBLE‐28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem‐cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin‐signalling‐inhibitor regulating pericycle cell‐divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient‐pluripotency/stemness leads to the generation of quiescent‐centre and meristematic‐like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.
The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt concentrations. Several stressassociated signaling molecules, including ethylene, methyl jasmonate, salicylic acid, and 2,4-dichlorophenoxyacetic acid, are capable of inducing TLC1 family expression in vivo. A representative of this family, named TLC1.1, was isolated from a genomic library from L. chilense. Transient expression assays in leaf protoplasts and stably transformed tobacco (Nicotiana tabacum) plants demonstrate that the U3 domain of the 5#-LTR region of this element can drive stress-induced transcriptional activation of the b-glucuronidase reporter gene. Two 57-bp tandem repeated sequences are found in this region, including an 8-bp motif, ATTTCAAA, previously identified as an ethylene-responsive element box in the promoter region of ethyleneinduced genes. Expression analysis of wild-type LTR and single and double ethylene-responsive element box mutants fused to the b-glucuronidase gene shows that these elements are required for ethylene-responsive gene expression in protoplasts and transgenic plants. We suggest that ethylene-dependent signaling is the main signaling pathway involved in the regulation of the expression of the TLC1.1 element from L. chilense.
Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their tolerance to abiotic challenge. Expression analysis of the genes encoding enzymes of these pathways (DXS, IPI, GGPPS, PSY1, NCED and HPT1) in plants at different RWC values shows significant differences for only GGPPS and HPT1, with higher expression in the tolerant S. chilense. Chlorophyll, carotenoids, α-tocopherol and ABA content was also determined in both species under different drought conditions. In agreement with HPT1 transcriptional activity, higher α-tocopherol content was observed in S. chilense than in S. lycopersicum, which correlates with a lower degree of lipoperoxidation in the former species. These results suggest that, in addition to lower stomatal conductance, α-tocopherol biosynthesis is part of the adaptation mechanisms of S. chilense to adverse environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.