Galectins are a family of carbohydrate-binding proteins with an affinity for beta-galactosides. Galectin-1 (Gal-1) is differentially expressed by various normal and pathological tissues and appears to be functionally polyvalent, with a wide range of biological activity. The intracellular and extracellular activity of Gal-1 has been described. Evidence points to Gal-1 and its ligands as one of the master regulators of such immune responses as T-cell homeostasis and survival, T-cell immune disorders, inflammation and allergies as well as host-pathogen interactions. Gal-1 expression or overexpression in tumors and/or the tissue surrounding them must be considered as a sign of the malignant tumor progression that is often related to the long-range dissemination of tumoral cells (metastasis), to their dissemination into the surrounding normal tissue, and to tumor immune-escape. Gal-1 in its oxidized form plays a number of important roles in the regeneration of the central nervous system after injury. The targeted overexpression (or delivery) of Gal-1 should be considered as a method of choice for the treatment of some kinds of inflammation-related diseases, neurodegenerative pathologies and muscular dystrophies. In contrast, the targeted inhibition of Gal-1 expression is what should be developed for therapeutic applications against cancer progression. Gal-1 is thus a promising molecular target for the development of new and original therapeutic tools.
We show that high-grade astrocytic tumors with high levels of galectin-1 expression are associated with dismal prognoses. The immunohistochemical analysis of galectin-1 expression of human U87 and U373 glioblastoma xenografts from the brains of nude mice revealed a higher level of galectin-1 expression in invasive areas rather than non-invasive areas of the xenografts. Nude mice intracranially grafted with U87 or U373 cells constitutively expressing low levels of galectin-1 (by stable transfection of an expression vector containing the antisense mRNA of galectin-1) had longer survival periods than those grafted with U87 or U373 cells expressing normal levels of galectin-1. Galectin-1 added to the culture media markedly and specifically increased cell motility levels in human neoplastic astrocytes. These effects are related to marked modifications in the organization of the actin cytoskeleton and the increase in small GTPase RhoA expression. All the data obtained indicate that galectin-1 enhances the migratory capabilities of tumor astrocytes and, therefore, their biological aggressiveness.
Protein (lectin)‐carbohydrate interaction is supposed to be relevant for tumor cell behavior. The aims of the present work are to investigate whether galectin‐1 modulates migration/invasion features in human gliomas in vitro, whether it can be detected in human gliomas immunohistochemically, and whether its expression is attributable to certain glioma subgroups with respect to invasion and prognosis. For this purpose, we quantitatively determined (by computer‐assisted microscopy) the immunohistochemical expression of galectin‐1 in 220 gliomas, including 151 astrocytic, 38 oligodendroglial, and 31 ependymal tumors obtained from surgical resection. We also xenografted three human glioblastoma cell lines (the H4, U87, and U373 models) into the brains of nude mice in order to characterize the in vivo galectin‐1 expression pattern in relation to tumor invasion of the normal brain parenchyma. In addition, we characterized the role in vitro of galectin‐1 in U373 tumor astrocyte migration and kinetics. Our data reveal expression of galectin‐1 in all human glioma types with no striking differences between astrocytic, oligodendroglial, and ependymal tumors. The level of galectin‐1 expression correlated with the grade in the group of astrocytic tumors only. Furthermore, immunopositivity of high‐grade astrocytic tumors from patients with short‐term survival periods was stronger than that of tumors from patients with long‐term survivals. In human glioblastoma xenografts, galectin‐1 was preferentially expressed in the more invasive parts of these xenografts. In vitro experiments revealed that galectin‐1 stimulates migration of U373 astrocytes. GLIA 33:241–255, 2001. © 2001 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.