Advances in video capturing devices enable adaptive posture estimation (APE) and event classification of multiple human-based videos for smart systems. Accurate event classification and adaptive posture estimation are still challenging domains, although researchers work hard to find solutions. In this research article, we propose a novel method to classify stochastic remote sensing events and to perform adaptive posture estimation. We performed human silhouette extraction using the Gaussian Mixture Model (GMM) and saliency map. After that, we performed human body part detection and used a unified pseudo-2D stick model for adaptive posture estimation. Multifused data that include energy, 3D Cartesian view, angular geometric, skeleton zigzag and moveable body parts were applied. Using a charged system search, we optimized our feature vector and deep belief network. We classified complex events, which were performed over sports videos in the wild (SVW), Olympic sports, UCF aerial action dataset and UT-interaction datasets. The mean accuracy of human body part detection was 83.57% over the UT-interaction, 83.00% for the Olympic sports and 83.78% for the SVW dataset. The mean event classification accuracy was 91.67% over the UT-interaction, 92.50% for Olympic sports and 89.47% for SVW dataset. These results are superior compared to existing state-of-the-art methods.
The study of human posture analysis and gait event detection from various types of inputs is a key contribution to the human life log. With the help of this research and technologies humans can save costs in terms of time and utility resources. In this paper we present a robust approach to human posture analysis and gait event detection from complex video-based data. For this, initially posture information, landmark information are extracted, and human 2D skeleton mesh are extracted, using this information set we reconstruct the human 2D to 3D model. Contextual features, namely, degrees of freedom over detected body parts, joint angle information, periodic and non-periodic motion, and human motion direction flow, are extracted. For features mining, we applied the rule-based features mining technique and, for gait event detection and classification, the deep learning-based CNN technique is applied over the mpii-video pose, the COCO, and the pose track datasets. For the mpii-video pose dataset, we achieved a human landmark detection mean accuracy of 87.09% and a gait event recognition mean accuracy of 90.90%. For the COCO dataset, we achieved a human landmark detection mean accuracy of 87.36% and a gait event recognition mean accuracy of 89.09%. For the pose track dataset, we achieved a human landmark detection mean accuracy of 87.72% and a gait event recognition mean accuracy of 88.18%. The proposed system performance shows a significant improvement compared to existing state-of-the-art frameworks.
With the change of technology and innovation of the current era, retrieving data and data processing becomes a more challenging task for researchers. In particular, several types of sensors and cameras are used to collect multimedia data from various resources and domains, which have been used in different domains and platforms to analyze things such as educational and communicational setups, emergency services, and surveillance systems. In this paper, we propose a robust method to predict human behavior from indoor and outdoor crowd environments. While taking the crowd-based data as input, some preprocessing steps for noise reduction are performed. Then, human silhouettes are extracted that eventually help in the identification of human beings. After that, crowd analysis and crowd clustering are applied for more accurate and clear predictions. This step is followed by features extraction in which the deep flow, force interaction matrix and force flow features are extracted. Moreover, we applied the graph mining technique for data optimization, while the maximum entropy Markov model is applied for classification and predictions. The evaluation of the proposed system showed 87% of mean accuracy and 13% of error rate for the avenue dataset, while 89.50% of mean accuracy rate and 10.50% of error rate for the University of Minnesota (UMN) dataset. In addition, it showed a 90.50 mean accuracy rate and 9.50% of error rate for the A Day on Campus (ADOC) dataset. Therefore, these results showed a better accuracy rate and low error rate compared to state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.