Offshore cranes placed on the surface of Floating Production Storage and Offloading (FPSO) vessels affect the structural response of their main decks, which can alter the safe operation of the FPSO vessels. Generally, classification societies rules are used to predict the structural strength of the main deck of FPSO vessels. However, these classification societies rules are limited to estimate the variation of the structural performance of the main deck caused by the operation of offshore cranes under different hydrodynamic conditions. Here, we present a methodology to determine the alteration of the structural behavior of a main deck of FPSO vessel due to different operation conditions of a board offshore crane. This methodology considers the hydrodynamic response for two ultimate limit states: operating and storm conditions from 1000 m water depth in Gulf of Mexico with a return period of 10 and 100 years, respectively. The methodology includes finite element method (FEM) models of the main deck supporting an offshore crane to predict its structural response. The maximum von Mises stress of the main deck does not overcome its maximum permissible stress, which allows a safe operation of the FPSO crane. The proposed methodology can be used to estimate the structural behavior of main decks of FPSO vessels that are modified for supporting offshore cranes, regarding the hydrodynamic response for each FPSO under the operation and extreme conditions in its location. Thus, naval designers could select the better structural modifications of the main decks that decrease their costs of construction and maintenance.
The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior IPB is calculated taking into account the uncertainty in mechanical and geometrical properties. The problem is developed in three dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the von Misses criterion is used. To solve the nonlinear equations, an incremental method is employed. The results show a relatively small failure probability (PF) for the ranges of loads between 0.6<W^<1.0. However, for values between 1.0<W^<2.5, the probability of failure increases significantly. Consequently, for W^≥2.5, the plate failure is imminent. The results are compared to those that were found in the literature and the agreement is good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.