Organocatalysis is becoming an important tool in polymer science because of its versatility and specificity. To date a limited number of organic catalysts have demonstrated the ability to promote stereocontrolled polymerizations. In this work we report one of the first examples of chirality transfer from a catalyst to a polymer in the organocatalyzed ring-opening polymerization (ROP) of rac-lactide (rac-LA). We have polymerized rac-LA using the diastereomeric densely substituted amino acids (2S,3R,4S,5S)-1-methyl-4-nitro-3,5-diphenylpyrrolidine-2-carboxylic acid (endo-6) and (2S,3S,4R,5S)-1-methyl-4-nitro-3,5-diphenylpyrrolidine-2-carboxylic acid (exo-6), combined with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a cocatalyst. Both diastereoisomers not only showed the ability to synthesize enriched isotactic polylactide with a P higher than 0.90 at room temperature but also were able to preferentially promote the polymerization of one of the isomers (l or d) with respect to the other. Thus, exo-6 preferentially polymerized l-lactide, whereas endo-6 preferred d-lactide as the substrate. Density functional theory calculations were conducted to investigate the origins of this unique stereocontrol in the polymerization, providing mechanistic insight and explaining why the chirality of the catalyst is able to define the stereochemistry of the monomer insertion.
RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) TITLE RUNNING HEAD Gold-catalyzed arene C-H bonds functionalization by carbene insertion.ABSTRACT. The direct functionalization of aromatic C-H bonds by carbene insertion from diazocompounds catalyzed by gold complexes with N-heterocyclic ligands is described. The reaction is completely selective toward the Csp 2 -H bonds, other Csp 3 -H bonds remaining unreacted. A study with a several NHC ligands in Au(I) and Au(III) complexes has been performed. A potential application in profen derivatives has also been developed.
We examined the ability of Tp x M (Tp x = hydrotris(pyrazolyl)borate ligand; M = Cu and Ag) and IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene; M = Cu, Ag, Au) complexes as catalyst precursors for the cross-coupling of diazo compounds. Experimental data showed that the metal centre can be tuned with the appropriate selection of the ligand to yield either the homo-or hetero-coupling (cross-coupling) products. A computational study of the reaction mechanism allowed the rationalization of the experimental reactivity patterns, and the identification of the key reaction step controlling the selectivity: the initial reaction between the metallocarbene intermediate and one of the diazo compounds.
A novel hybrid dendrimer (TRANSGEDEN) that combines a conjugated rigid polyphenylenevinylene (PPV) core with flexible polyamidoamine (PAMAM) branches at the surface was synthesized and characterized. The potential of this material as a nonviral gene delivery system was also examined, and it was observed that dendriplexes formed by TRANSGEDEN and small interfering ribonucleic acids (siRNAs) can be incorporated into >90% of neuronal cells without any toxicity up to a dendrimer concentration of 3 μM. TRANSGEDEN was used to deliver a specific siRNA to rat cerebellar granular neurons (CGNs) to knock down the cofilin-1 protein. Cofilin-1 removal partially protects CGNs from N-methyl D-aspartate (NMDA)-mediated neuronal death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.