Promising new drugs are being evaluated for treatment of multiple myeloma (MM), but their impact should be measured against the expected outcome in patients failing current therapies. However, the natural history of relapsed disease in the current era remains unclear. We studied 286 patients with relapsed MM, who were refractory to bortezomib and were relapsed, refractory, or ineligible, to an IMiD (Immunomodulatory Drug), with measurable disease and ECOG PS of 0, 1 or 2. The date patients satisfied the entry criteria was defined as time zero (T0). The median age at diagnosis was 58 years and time from diagnosis to T0 was 3.3 years. Following T0, 213 (74%) patients had a treatment recorded with one or more regimens (median=1; range 0-8). The first regimen contained bortezomib in 55 (26%) patients and an IMiD in 70 (33%). A minor response or better was seen to at least one therapy after T0 in 94 patients (51%) including >=partial response in 69 (38%). The median overall survival and event free survival from T0 were 9 and 5 months respectively. This study confirms the poor outcome once patients become refractory to current treatments. The results provide context for interpreting ongoing trials of new drugs.
Mesenchymal stromal cells (MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires the homing and migration of MSCs to a target tissue. Although MSC homing has been described, this process does not appear to be highly efficacious because only a few cells reach the target tissue and remain there after systemic administration. This has been ascribed to low expression levels of homing molecules, the loss of expression of such molecules during expansion, and the heterogeneity of MSCs in cultures and MSC culture protocols. To overcome these limitations, different methods to improve the homing capacity of MSCs have been examined. Here, we review the current understanding of MSC homing, with a particular focus on homing to bone marrow. In addition, we summarize the strategies that have been developed to improve this process. A better understanding of MSC biology, MSC migration and homing mechanisms will allow us to prepare MSCs with optimal homing capacities. The efficacy of therapeutic applications is dependent on efficient delivery of the cells and can, therefore, only benefit from better insights into the homing mechanisms.
Summary The aim of this study was to evaluate the tissue infiltration and phenotypic adhesion profile of 5T2 multiple myeloma (MM) and 5T33 MM cells and to correlate it with that observed in human disease. For each line, 30 mice were intravenously inoculated with myeloma cells and at a clear-cut demonstrable serum paraprotein concentration; mice were sacrificed and a number of organs removed. The haematoxylin-eosin stainings on paraffin sections were complemented with immunohistochemistry using monoclonal antibodies developed against the specific MM idiotype. When analysed over time, 5T2 MM cells could be observed in bone marrow samples from week 9 after transfer of the cells. For the 5T33 MM, a simultaneous infiltration was observed in bone marrow, spleen and liver 2 weeks after inoculation. Osteolytic lesions consistently developed in the 5T2 MM, but this was not consistent for 5T33 MM. PCNA staining showed a higher proliferative index for the 5T33 MM cells. The expression of adhesion molecules was analysed by immunohistochemistry on cytosmears: both 5T2 MM and 5T33 MM cells were LFA-1, CD44, VLA-4 and VLA-5 positive. We conclude that both lines have a phenotypic adhesion profile analogous to that of human MM cells. As the 5T2 MM cells are less aggressive than the 5T33 MM cells, their organ distribution is more restricted to the bone marrow and osteolytic lesions are consistently present, the former cell line induces myeloma development similar to the human disease.Keywords: multiple myeloma; adhesion molecules; organ involvement; 5T2; 5T33 Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal expansion of malignant plasma cells secreting a monoclonal immunoglobulin (Ig). The disease is mainly localized in the bone marrow. In this microenvironment the myeloma plasma cells receive signals necessary for their proliferation, terminal differentiation and for the secretion of osteoclast-activating factors. The osteoclast-activating factors recruit osteoclasts, which induce in situ osteolytic bone lesions (Bataille et al, 1989;Alsina et al, 1996); this is one of the major characteristics of the disease. It has been suggested that both cytokines and adhesion molecules are involved in this complex network of signals (Van Riet and Van Camp, 1993).To elucidate the exact mechanisms described above, an in vivo MM model is necessary. Radl et al (1979) found that 0.5% of ageing C57BL/KaLwRij mice spontanously developed a disease reminiscent of MM. The MM cells isolated from the bone marrow of different mice (5T MM) did not grow in vitro but could be transplanted by intravenous injection into young recipients of the same strain. This transplantable model resembles the human disease in several aspects (Radl et al, 1988): myeloma occurred spontaneously, the frequency of development of the disease is age related, tumour load can be assessed by paraproteinaemia and the (Radl et al, 1988).In order to understand the homing mechanisms of the 5T MM cells to the bone marrow, it was essential to determine accurately the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.