The literature is increasing on how to prioritize climate-smart options with stakeholders but relatively few examples exist on how to co-design climate-smart farming systems with them, in particular with smallholder farmers. This article presents a methodological framework to co-design climate-smart farming systems with local stakeholders (farmers, scientists, NGOs) so that large-scale change can be achieved. This framework is based on the lessons learned during a research project conducted in Honduras and Colombia from 2015 to 2017. Seven phases are suggested to engage a process of co-conception of climate-smart farming systems that might enable implementation at scale: (1) "exploration of the initial situation," which identifies local stakeholders potentially interested in being involved in the process, existing farming systems, and specific constraints to the implementation of climate-smart agriculture (CSA); (2) "co-definition of an innovation platform," which defines the structure and the rules of functioning for a platform favoring the involvement of local stakeholders in the process; (3) "shared diagnosis," which defines the main challenges to be solved by the innovation platform; (4) "identification and ex ante assessment of new farming systems," which assess the potential performances of solutions prioritized by the members of the innovation platform under CSA pillars; (5) "experimentation," which tests the prioritized solutions on-farm; (6) "assessment of the co-design process of climate-smart farming systems," which validates the ability of the process to reach its initial objectives, particularly in terms of new farming systems but also in terms of capacity building; and (7) "definition of strategies for scaling up/out," which addresses the scaling of the co-design process. For each phase, specific tools or methodologies are used: focus groups, social network analysis, theory of change, life-cycle assessment, and on-farm experiments. Each phase is illustrated with results obtained in Colombia or Honduras.
Many indicator-based methods for the environmental assessment of farming systems have been developed. It is not the absolute values of the indicators that reveal whether the impact of a system is acceptable, but rather the distance between these values and some reference values. We reviewed eight frameworks for the environmental assessment of agricultural systems that define reference values for their indicators. We analyzed the methods used to establish reference values and explored how to improve these methods to increase their usage and relevance. This analysis revealed a striking diversity of terminology, sources, and modes of expression of results. Normative reference values allow the assessment of a single system with a previously defined value; Relative reference values are based on indicator values for similar systems or a reference system. Normative reference values can be Science-based or Policy-based. A science-based normative reference value can be a Target value, which identifies desirable conditions, or an Environmental limit, which is the level beyond which conditions are unacceptable. The quantification of the uncertainty of reference values is a topic which is barely explored and warrants further research. Reference values present a means of introducing site specificity into methods for environmental assessment which seems, at present, largely under-exploited.
Purpose Coffee represents an important trade asset internationally. Around 70% of global coffee production is provided by 25 million smallholders farmers. In recent decades, coffee systems have been transformed into more intensified systems of coffee monoculture. The general objectives of this paper are to provide a better picture of the traditional coffee cropping systems and postharvest processes on-farm and to assess the environmental impacts, integrating the diversity of smallholder cropping systems.Methods A Life Cycle Assessment from cradle to farm gate was performed for three cropping systems representative of Colombian coffee cultivation according to the associated crops and shadow trees: coffee alone (CA), coffee with transition shade (CTS), and coffee with permanent shade (CPS). The system studied includes inputs, agricultural production and postharvest operations using the wet method. The final product of farms is parchment bean coffee at farm gate. The technology used is representative of the average practices of smallholder coffee growers in the region. To address multiple functions of coffee, three functional units (FU) were selected: area by time (ha*year −1 unit area), productivity (ton of parchment coffee) and farmers income (1000 USD$). Seven midpoint categories were selected: climate change, acidification, terrestrial eutrophication, freshwater eutrophication, marine eutrophication, freshwater ecotoxicity, and water resource depletion. Results and discussion We present the life cycle inventory and impact assessment results from three types of cropping systems CA, CTS and CPS. For all FU, the CPS system has the lowest potential impact, excepted for marine eutrophication. CPS also has the highest coffee yields, however it has also the highest costs. Even if cropping system diversification is only one of multiple factors that influence environmental performance, agroforestry seems to be a promising path to reduce and mitigate environmental impacts by decreasing off-fam contributions (input fabrication). Conclusions Results show the possibility that diversified cropping systems have an influence when assessing potential environmental impacts of coffee at farm gate and differences found might be influenced by shading in traditional coffee systems. Future work is needed to consider the real potential of CTS cropping system including land use and carbon dynamics. Assessments including social indicators and the rest of the value chain in particular coffee industrial transformation and utilization are also needed since the consumption stages are also a key driver to reduce the environmental footprint of coffee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.