The properties of nicotinic acetylcholine receptors (AChRs) on cultured rat superior cervical ganglion (SCG) neurons were analysed. AChR agonists [1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), cytisine] were applied to whole cells within 70ms. The desensitization rate of whole-cell currents during constant application of DMPP varied between neurons. The time course of desensitization was fitted by double exponentials with time constants kfast, of between 0.35 and 0.55s, and kslow, of 3-5s. By exchanging intracellular chloride for caesium methanesulphonate, the possibility of interference by a calcium-activated chloride current was excluded. In cells that exhibited a slowly desensitizing current during the application 20 microM DMPP, equimolar cytisine induced a larger peak current compared to the response to DMPP, while in cells with rapidly desensitizing DMPP-induced currents the response to equimolar cytisine was smaller. The differences in desensitization rates and agonist potencies are due to different functional properties of AChR subtypes, as indicated by currents recorded from outside-out patches upon rapid agonist application and removal (2ms each). The results indicate the presence of two distinct AChR subtypes on SCG neurons: one with a fast and one with a slow activation/desensitization rate, but both with similar single-channel conductances. Slow activation/desensitization was found to be associated with a high potency of cytisine/low potency of DMPP. For AChRs with rapid activation/desensitization kinetics the agonist potencies were reversed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.