Background Stromal-mediated signaling enhances NFκB pathway activity in chronic lymphocytic leukemia B-cells (CLL), leading to cell survival and chemoresistance. Ubiquitination of IκBα may partially account for constitutive activation of NFκB. MLN4924 is an investigational agent that inhibits the Nedd8-activating enzyme, thereby neutralizing Cullin-RING ubiquitin ligases and preventing degradation of their substrates. Experimental Design We conducted a pre-clinical assessment of MLN4924 in CLL. Primary CLL cells were co-cultured in vitro with CD40L-expressing stroma to mimic the pro-survival conditions present in lymphoid tissue. The effect of MLN4924 on CLL cell apoptosis, NFκB pathway activity, Bcl-2 family members and cell cycle was assessed by flow cytometry, western blotting, PCR and immunocytochemistry. Results CD40L-expressing stroma protected CLL cells from spontaneous apoptosis and induced resistance to multiple drugs, accompanied by NFκB activation and Bim repression. Treatment with MLN4924 induced CLL cell apoptosis and circumvented stroma-mediated resistance. This was accompanied by accumulation of phospho-IκBα, decreased nuclear translocation of p65 and p52 leading to inhibition of both canonical and non-canonical NFκB pathways, and reduced transcription of their target genes, notably chemokines. MLN4924 promoted induction of Bim and Noxa in the CLL cells leading to rebalancing of Bcl-2 family members towards the pro-apoptotic BH3-only proteins. siRNA-mediated knockdown of Bim or Noxa decreased sensitivity to MLN4924. MLN4924 enhanced the antitumor activity of the inhibitors of BCR-associated kinases. Conclusions MLN4924 disrupts NFκB activation and induces Bim expression in CLL cells thereby preventing stroma-mediated resistance. Our data provide rationale for further evaluation of MLN4924 in CLL.
Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.
Summary Chronic lymphocytic leukaemia (CLL) is an accumulative disorder marked by deficient apoptosis. The TP53 homolog TAp63 promotes apoptosis and chemosensitivity in solid tumours and its deregulation may contribute to CLL cell survival. We found that TAp63α was the most prevalent TP63 isoform in CLL. Compared to healthy B cells, TAp63 mRNA was repressed in 55.7% of CLL samples. TP63 promoter methylation was high in CLL and inversely correlated with TP63 protein expression in B-cell lymphoma cell lines. siRNA-mediated knockdown of TP63 resulted in partial protection from spontaneous apoptosis accompanied by reductions in PMAIP1 (NOXA), BBC3 (PUMA), and BAX mRNA in CLL cells and increased proliferation of Raji lymphoma cells. TAp63 mRNA levels were higher in CLL with unmutated IGHV. B cell receptor (BCR) engagement led to repression of TP63 mRNA expression in malignant B cells, while pharmacological inhibition of BCR signalling prevented TP63 downregulation. MIR21, known to target TAp63, correlated inversely with TAp63 expression in CLL, and BCR-mediated downregulation of TP63 was accompanied by MIR21 upregulation in most CLL samples. Our data illustrate the pro-apoptotic function of TP63, provide insights into the mechanisms of BCR-targeting agents, and establish a rationale for designing novel approaches to induce TP63 in CLL and B-cell lymphoma.
CDK (cyclin-dependent kinase) inhibitors have shown remarkable activity in CLL, where its efficacy has been linked to inhibition of the transcriptional CDKs (7 and 9) and deregulation of RNA polymerase and short-lived pro-survival proteins such as MCL1. Furthermore, ER (endoplasmic reticulum) stress has been implicated in CDK inhibition in CLL. Here we conducted a pre-clinical study of a novel orally active kinase inhibitor P1446A in CLL B-cells. P1446A inhibited CDKs at nanomolar concentrations and induced rapid apoptosis of CLL cells in vitro, irrespective of chromosomal abnormalities or IGHV mutational status. Apoptosis preceded inactivation of RNA polymerase, and was accompanied by phosphorylation of stress kinases JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Pharmacologic inhibitors of JNK/p38 MAPK conferred protection from P1446A-mediated apoptosis. Treatment with P1446A led to a dramatic induction of NOXA in a JNK-dependent manner, and sensitized CLL cells to ABT-737, a BH3-mimetic. We observed concurrent activation of apoptosis stress-inducing kinase 1 (ASK1) and its interaction with inositol-requiring enzyme 1 (IRE1) and tumor necrosis factor receptor-associated factor 2 (TRAF2) in CLL cells treated with P1446A, providing insights into upstream regulation of JNK in this setting. Consistent with previous reports on limited functionality of ER stress mechanism in CLL cells, treatment with P1446A failed to induce an extensive unfolded protein response. This study provides rationale for additional investigations of P1446A in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.