Context. The hot X-ray emitting gas in clusters of galaxies is a very large repository of metals produced by supernovae. During the evolution of clusters, billions of supernovae eject their material into this Intra-Cluster Medium (ICM). Aims. We aim to accurately measure the abundances in the ICM of many clusters and compare these data with metal yields produced by supernovae. With accurate abundances determined using this cluster sample we will be able to constrain supernova explosion mechanisms. Methods. Using the data archive of the XMM-Newton X-ray observatory, we compile a sample of 22 clusters. We fit spectra extracted from the core regions and determine the abundances of silicon, sulfur, argon, calcium, iron, and nickel. The abundances from the spectral fits are subsequently fitted to supernova yields determined from several supernova type Ia and core-collapse supernova models. Results. We find that the argon and calcium abundances cannot be fitted with currently favoured supernova type Ia models. We obtain a major improvement of the fit, when we use an empirically modified delayed-detonation model that is calibrated on the Tycho supernova remnant. The two modified parameters are the density where the sound wave in the supernova turns into a shock and the ratio of the specific internal energies of ions and electrons at the shock. Our fits also suggest that the core-collapse supernovae that contributed to the enrichment of the ICM had progenitors which were already enriched. Conclusions. The Ar/Ca ratio in clusters is a good touchstone for determining the quality of type Ia models. The core-collapse contribution, which is about 50% and not strongly dependent on the IMF or progenitor metallicity, does not have a significant impact on the Ar/Ca ratio. The number ratio between supernova type Ia and core-collapse supernovae suggests that binary systems in the appropriate mass range are very efficient (∼5-16%) in eventually forming supernova type Ia explosions.
The hot intra-cluster medium (ICM) permeating galaxy clusters and groups is not pristine, as it has been continuously enriched by metals synthesised in Type Ia (SNIa) and core-collapse (SNcc) supernovae since the major epoch of star formation (z 2-3). The cluster/group enrichment history and mechanisms responsible for releasing and mixing the metals can be probed via the radial distribution of SNIa and SNcc products within the ICM. In this paper, we use deep XMM-Newton/EPIC observations from a sample of 44 nearby cool-core galaxy clusters, groups, and ellipticals (CHEERS) to constrain the average radial O, Mg, Si, S, Ar, Ca, Fe, and Ni abundance profiles. The radial distributions of all these elements, averaged over a large sample for the first time, represent the best constrained profiles available currently. Specific attention is devoted to a proper modelling of the EPIC spectral components, and to other systematic uncertainties that may affect our results. We find an overall decrease of the Fe abundance with radius out to ∼0.9r 500 and ∼0.6r 500 for clusters and groups, respectively, in good agreement with predictions from the most recent hydrodynamical simulations. The average radial profiles of all the other elements (X) are also centrally peaked and, when rescaled to their average central X/Fe ratios, follow well the Fe profile out to at least ∼0.5r 500 . As predicted by recent simulations, we find that the relative contribution of SNIa (SNcc) to the total ICM enrichment is consistent with being uniform at all radii, both for clusters and groups using two sets of SNIa and SNcc yield models that reproduce the X/Fe abundance pattern in the core well. In addition to implying that the central metal peak is balanced between SNIa and SNcc, our results suggest that the enriching SNIa and SNcc products must share the same origin and that the delay between the bulk of the SNIa and SNcc explosions must be shorter than the timescale necessary to diffuse out the metals. Finally, we report an apparent abundance drop in the very core of 14 systems (∼32% of the sample). Possible origins of these drops are discussed.
Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.
We present here the results of a deep (130 ks) XMM-Newton observation of the cluster of galaxies 2A 0335+096. The deep exposure allows us to study in detail its temperature structure and its elemental abundances. We fit three different thermal models and find that the multitemperature wdem model fits our data best. We find that the abundance structure of the cluster is consistent with a scenario where the relative number of type Ia supernovae contributing to the enrichment of the intra-cluster medium is ∼25%, while the relative number of core collapse supernovae is ∼75%. Comparison of the observed abundances to the supernova yields does not allow us to put any constrains on the contribution of Pop III stars to the enrichment of the ICM. Radial abundance profiles show a strong central peak of both type Ia and core collapse supernova products. Both the temperature and iron abundance maps show an asymmetry in the direction of the elongated morphology of the surface brightness. In particular the temperature map shows a sharp change over a brightness edge on the southern side of the core, which was identified as a cold front in the Chandra data. This suggests that the cluster is in the process of a merger with a subcluster. Moreover, we find that the blobs or filaments discovered in the core of the cluster by Chandra are, contrary to the previous results, colder than the ambient gas and they appear to be in pressure equilibrium with their environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.