The objective of the present investigation was to examine the residual antimicrobial activity after a topical exposure of reconstructed human epidermis (RHE) to equimolar solutions of either chlorhexidine digluconate (CHG, 0.144% w/v) or octenidine dihydrochloride (OCT, 0.1% w/v) for 15 min. RHE-associated antiseptic agents were more effective on Staphylococcus aureus than on Pseudomonas aeruginosa. S. aureus was not detected after 24 h of contact, which demonstrated a microbicidal efficacy of greater than 5-log10 reduction. In contrast, P. aeruginosa was reduced by approximately 2 log10 at the same incubation time, which parallels the growth of the initial inoculum. This result could be interpreted either as a microbiostatic effect or as an adherence of P. aeruginosa to a low positively charged surface. Small amounts of CHG and OCT can penetrate the stratum corneum. Using these antiseptic agents, the viability of keratinocytes was reduced to 65-75% of that of the untreated RHE control following 24 h incubation in the presence of test microorganisms. With consideration of antimicrobial activity and cytotoxic effect, OCT corresponds better to a biocompatible antiseptic agent than CHG.
A combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept) is a commonly used disinfectant in human medicine. As porcine skin represents an adequate model for human skin, the effect of octenidine dihydrochloride and phenoxyethanol on wound healing is studied in pigs. Furthermore, the in vitro percutaneous permeation of the test substances is studied. The impact of the test formulations on wound healing is examined (A) under non occlusive conditions and (B) in comparison to another disinfectant based on povidone-iodine under occlusive conditions, while wounds are treated daily with the test substances. The percutaneous permeation of octenidine dihydrochloride and phenoxyethanol is studied in Franz-type diffusion cells with intact skin as well as barrier disrupted after tape stripping. Compared with povidone-iodine or vehicle treatment as well as untreated control wounds the treatment of wounds with the test formulation has no influence on the healing rate in pigs and does not induce retardation of wound healing. The in vitro diffusion experiment reveals that octenidine dihydrochloride is only detectable in the acceptor chamber of three-barrier disrupted skin samples. Phenoxyethanol permeates through intact porcine skin in amounts of 11.3% and through barrier disrupted skin in amounts of 43.9%
BackgroundA water based combination of 0.1% octenidine dihydrochloride and 2% 2 - phenoxyethanol is registered in many European countries as an antiseptic solution (octenisept®) for topical treatment with high antimicrobial activity for human use, but octenidine based products have not been registered for veterinary use yet. The aim of the present study was to investigate whether octenidine dihydrochloride or 2 -phenoxyethanol, the two main components of this disinfectant, permeate through animal skin in vitro. Therefore, permeation studies were conducted using Franz-type diffusion cells. 2 ml of the test compound were applied onto 1.77 cm2 split skin of cats, dogs, cows and horses. To simulate wounded skin, cattle skin was treated with adhesive tapes 100 times, as well. Up to an incubation time of 28 hours samples of the acceptor chamber were taken and were analysed by UV-HPLC. Using the method of the external standard, the apparent permeability coefficient, the flux Jmax, and the recovery were calculated. Furthermore, the residues of both components in the skin samples were determined after completion of the diffusion experiment.ResultsAfter 28 hours no octenidine dihydrochloride was found in the receptor chamber of intact skin samples, while 2.7% of the topical applied octenidine dihydrochloride permeated through barrier disrupted cattle skin. 2 - phenoxyethanol permeated through all skin samples with the highest permeability in equine, followed by bovine, canine to feline skin. Furthermore, both components were found in the stratum corneum and the dermis of all split skin samples with different amounts in the examined species.ConclusionFor 2-phenoxyethanol the systemic impact of the high absorption rate and a potential toxicological risk have to be investigated in further studies. Due to its low absorption rates through the skin, octenidine dihydrochloride is suitable for superficial skin treatment in the examined species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.