We consider a modified Noguchi electrical transmission line and examine the effects of a linear capacitance C(s) on the wave characteristics while considering the semidiscrete approximation. It appears that wave modulations in the network are governed by a dispersive nonlinear Schrödinger equation whose coefficients are shown to be a function of C(s). We show that the use of this linear capacitance makes the filter more selective. We also show that the width of the unstable regions increases while that of the stable regions decreases with C(s) adding consequently the width of the frequency domain where bright solitons exist. Furthermore, we establish the existence of one more region (compared to the work of Marquié et al. [Marquié et al., Phys. Rev. E 49, 828 (1994)]) in the dispersion curve that allows the motion of envelope solitons of higher frequency in the system. Numerical and experimental investigations done on the model confirm our analytical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.