Conidial dispersal in Stachybotrys chartarum in response to low-velocity airflow was studied using a microflow apparatus. The maximum rate of spore release occurred during the first 5 min of airflow, followed by a dramatic reduction in dispersal that left more than 99% of the conidia attached to their conidiophores. Micromanipulation of undisturbed colonies showed that micronewton μN) forces were needed to dislodge spore clusters from their supporting conidiophores. Calculations show that airspeeds that normally prevail in the indoor environment disturb colonies with forces that are 1,000-fold lower, in the nanonewton (nN) range. Low-velocity airflow does not, therefore, cause sufficient disturbance to disperse a large proportion of the conidia of S. chartarum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.