Publication
AbstractIn ice hockey, concussions can occur as a result of many different types of impact events, however hockey helmets are certified using a single injury scenario, involving drop tests to a rigid surface. The purpose of this study is to measure the protective capacity of ice hockey helmets for different impact events in ice hockey. A helmeted and unhelmeted Hybrid III headform were impacted simulating falls, elbow, shoulder and puck impacts in ice hockey.Linear and rotational acceleration and maximum principal strain (MPS) were measured. A comparison of helmeted and unhelmeted impacts found significant differences existed in most conditions (p<0.05), however some shoulder and puck impacts showed no significant difference (p>0.05). Impacts to the ice hockey helmet tested resulted in acceleration levels below reported ranges of concussion and TBI for falls up to 5 m/s, elbow collisions, and low velocity puck impacts but not for shoulder collisions or high velocity puck impacts and falls. The helmet tested reduced MPS below reported ranges of concussion and TBI for falls up to 5 m/s but not for the other impact events across all velocities and locations. This suggests that the ice hockey helmet tested is unable to reduce engineering parameters below reported ranges of concussion and TBI for impact conditions which do not represent a drop against a rigid surface.
Objectives
To collect and analyse helmets from real-world equestrian accidents. To record reported head injuries associated with those accidents. To compare damage to helmets certified to different standards and the injuries associated with them.
Methods
Two hundred sixteen equestrian helmets were collected in total. One hundred seventy-six helmets from amateur jockeys were collected via accident helmet return schemes in the UK and USA, while 40 helmets from professional jockeys were collected by The Irish Turf Club. All helmet damage was measured, and associated head injury was recorded.
Results
Eighty-eight percent (189) of equestrian fall accidents returned an injury report of which 70% (139) reported a head injury. Fifty-four percent (75) of head injury cases had associated helmet damage while 46% had no helmet damage. Reported head injuries consisted of 91% (126) concussion, 4% (6) skull fractures, 1 (0.7%) subdural hematoma, 1 (0.7%) cerebral edema and 5 (3.6%) diffuse axonal injury (DAI). It is also shown that helmets certified to the most severe standard are overrepresented in this undamaged group (
p
<0.001).
Conclusions
It is clear that despite jockeys wearing a helmet, large proportions of concussion injuries still occur in the event of a jockey sustaining a fall. However, the data suggest it is likely that helmets reduce the severity of head injury as the occurrence of skull fracture is low. The proportion of undamaged helmets with an associated head injury suggests that many helmets may be too stiff relative to the surface they are impacting to reduce the risk of traumatic brain injury (TBI). It may be possible to improve helmet designs and certification tests to reduce the risk of head injury in low-severity impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.