The TROPOspheric Monitoring Instrument (TROPOMI) is anticipated to provide high-quality and timely global atmospheric composition information through observations of atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, formaldehyde and aerosol properties. The methane and the aerosol retrievals require very precise cloud clearing, which is difficult to achieve at the TROPOMI spatial resolution (7 by 7 km) and without thermal IR measurements. The TROPOMI carrier – the Sentinel 5 Precursor (S5P), does not include a cloud imager, thus it is planned to fly the S5P mission in a constellation with an instrument yielding an accurate cloud mask. The cloud imagery data will be provided by the US NPOESS Preparatory Project (NPP) mission, which will have the Visible Infrared Imager Radiometer Suite (VIIRS) on board (Scalione, 2004). This paper investigates the temporal co-registration requirements for suitable time differences between the VIIRS measurements of clouds and the TROPOMI methane and aerosol measurements, so that the former could be used for cloud clearing. The temporal co-registration is studied using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data with 15 min temporal resolution (Veefkind, 2008b), and with data from the Geostationary Operational Environmental Satellite – 10 (GOES-10) having 1 min temporal resolution. The aim is to understand and assess the relation between the amount of allowed cloud contamination and the required time difference between the two satellites' overflights. Quantitative analysis shows that a time difference of approximately 5 min is sufficient (in most conditions) to use the cloud information from the first instrument for cloud clearing in the retrievals using data from the second instrument. In recent years the A-train constellation demonstrated the benefit of flying satellites in formation. Therefore this study's findings will be useful for designing future Low Earth Orbit (LEO) satellite constellations
The TROPOspheric Monitoring Instrument (TROPOMI) is planed for launch in 2014 on board of the Sentinel 5 Precursor (S5P) and is anticipated to provide high-quality and timely information on the global atmospheric composition for climate and air quality applications. TROPOMI will observe key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, formaldehyde and aerosol properties. The retrieval algorithms for the anticipated products require cloud information on a pixel basis. Most of them will use the cloud properties derived from TROPOMI's own measurements, such as the O<sub>2</sub> A-band measurements. However, the methane and the aerosol retrievals require very precise cloud clearing, which is difficult to achieve at the TROPOMI spatial resolution (7 × 7 km<sup>2</sup>) and without thermal IR measurements. The current payload of the Sentinel 5 Precursor (S-5P) does not include a cloud imager, thus it is planned to fly the S5P mission in a constellation with another instrument yielding an accurate cloud mask. The cloud imagery data will be provided by the US NPOESS Preparatory Project (NPP) mission which will have the Visible Infrared Imager Radiometer Suite (VIIRS) on board (Scalione, 2004). VIIRS will have 22 bands in the VIS and IR spectral ranges, and will deliver data with two spatial resolutions: imagery resolution bands with a nominal pixel size of 370 m at nadir, and moderate resolution bands with nominal pixel size 740 m at nadir. The instrument is combining fine spatial resolution with high-accuracy calibration similar or superior to AVHRR. <br><br> This paper presents results from investigating the temporal co-registration requirements for suitable time differences between the VIIRS measurements of clouds and the TROPOMI methane and aerosol measurements, so that the former could be used for cloud clearing. The temporal co-registration is studied using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data with 15 min temporal resolution (Veefkind, 2008a), and with data from the Geostationary Operational Environmental Satellite-10 (GOES-10) having 1 min temporal resolution. The aim is to understand and assess the relation between the amount of allowed cloud contamination and the required time difference between the two satellites' overflights. Quantitative analysis shows that a time difference of approximately 5 min is sufficient (in most conditions) to use the cloud information from the first instrument for cloud clearing in the retrievals using data from the second instrument. In recent years the A-train constellation demonstrated the benefit of flying satellites in formation. Therefore this study's findings will be useful and applicable for designing future Low Earth Orbit (LEO) satellite constellations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.