Abstract:The basic principle of silviculture is the rational use of natural regeneration. The acceleration and equalisation of seed germination and an increase of the field seed germination ability are affected by seed scarification, which results in the destruction or weakening of the seed cover. Acorn scarification is performed manually, in the standing position, most often in adapted work stations, whose geometry is adjusted by the staff to their own anthropometric dimensions. An added value of acorn scarification consists in the ability to visually assess the health status of the cotyledons visible on the cross-section, making it possible to infer the potential use of a seed for sowing. However, due to the scope and duration of the activities involved, manual scarification is a process that is monotonous and physically as well as psychologically tiring for its performer. Automating of this process allows for effective replacement of human labour. The results obtained from the use of the vision system designed to determine the length and orientation of acorns may be considered satisfactory. The implementation of the seed orientation detection algorithm using the Harris detector was 90% accurate. Studies and analyses have shown that the process of acorn scarification has a positive effect on the later improvement of uniformity and acceleration of seedling emergence. In the case of seeds subjected to scarification, 83% of the acorns germinated within 4 to 6 weeks after sowing.
Due to technological progress in forestry, seedlings with covered root systems-especially those grown in container nurseries-have become increasingly important in forest nursery production. One the trees that is most commonly grown this way is the common oak (Quercus robur L.). For an acorn to be sown in a container, it is necessary to remove its upper part during mechanical scarification, and evaluate its sowing suitability. At present, this is mainly done manually and by visual assessment. The low effectiveness of this method of acorn preparation has encouraged a search for unconventional solutions. One of them is the use of an automated device that consists of a computer vision-based module. For economic reasons related to the cost of growing seedlings in container nurseries, it is beneficial to minimize the contribution of unhealthy seeds. The maximum accuracy, which is understood as the number of correct seed diagnoses relative to the total number of seeds being assessed, was adopted as a criterion for choosing a separation threshold. According to the method proposed, the intensity and red components of the images of scarified acorns facilitated the best results in terms of the materials examined during the experiment. On average, a 10% inaccuracy of separation was observed. A secondary outcome of the presented research is an evaluation of the ergonomic parameters of the user interface that is attached to the unit controlling the device when it is running in its autonomous operation mode.
Introduction and objective. Many people are exposed to vibration (WBV) in their occupational lives. The biodynamic responses of the human body in sitting conditions have been widely measured under whole-body vibration (WBV). The measures are most often expressed in terms of force-motion relations at the driving-point, namely, mechanical impedance, apparent mass and absorbed power, and flow of vibration through the body, such as seat-to-head and body segments vibration transmissibility. The absorbed power is a measure of the energy absorbed by the subject due to the external forces applied to the system. Materials and methods. The body behaves like a vibrating physical system with distributed energy-storage elements (masses, springs) and energy-dissipation elements (dampers). The total quantity of power can be divided into 2 componentsone real and one imaginary. The real component reflects the energy-absorbing part of the system, due to the transformation of friction into heat within the tissues. The imaginary component reflects the energy-storing part of the system which does not consume any vibration energy. Results. The seated human is modeled as a series 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator's body segments has been determined as a function of the agricultural combination operating speed 1.4-2.75 ms-1. Conclusions. The concept of absorbed power as a measurement for evaluation of WBV exposure opens a new area for research. The important character of absorbed power is that it has physical significance and therefore can be measured as well as computed analytically. The absorbed power relates to dissipation of energy attributed to relative motions of the visco-elastic tissues, muscles and skeletal system, which under prolonged exposures could lead to physical damage in the musculoskeletal system. A structural model of the human operator allows determination of the dynamic characteristics of the model, and study of the energy flow between the elements of the model.
Reducing the amplitude of vibratory motion of the elements in a machine will reduce the noise generated by the machine element. The obtained results confirm that structural dynamic modification is an effective tool for changing the dynamical properties of vibrating systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.