Abstract-We propose the Multiresponse Sparse Regression algorithm, an input selection method for the purpose of estimating several response variables. It is a forward selection procedure for linearly parameterized models, which updates with carefully chosen step lengths. The step length rule extends the correlation criterion of the Least Angle Regression algorithm for many responses. We present a general concept and explicit formulas for three different variants of the algorithm. Based on experiments with simulated data, the proposed method competes favorably with other methods when many correlated inputs are available for model construction. We also study the performance with several real data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.