With the increasing number of online social posts, review comments, and digital documentations, the Arabic text classification (ATC) task has been hugely required for many spontaneous natural language processing (NLP) applications, especially within the coronavirus pandemics. The variations in the meaning of the same Arabic words could directly affect the performance of any AI-based framework. This work aims to identify the effectiveness of machine learning (ML) algorithms through preprocessing and representation techniques. This effectiveness is measured via different AI-based classification techniques. Basically, the ATC process is influenced by several factors such as stemming in preprocessing, method of feature extraction and selection, nature of datasets, and classification algorithm. To improve the overall classification performance, preprocessing techniques are mainly used to convert each Arabic word into its root and decrease the representation dimension among the datasets. Feature extraction and selection always play crucial roles to represent the Arabic text in a meaningful way and improve the classification accuracy rate. The selected classifiers in this study are performed based on various feature selection algorithms. The overall classification evaluation results are compared using different classifiers such as multinomial Naive Bayes (MNB), Bernoulli Naive Bayes (BNB), Stochastic Gradient Descent (SGD), Support Vector Classifier (SVC), Logistic Regression (LR), and Linear SVC. All of these AI classifiers are evaluated using five balanced and unbalanced benchmark datasets: BBC Arabic corpus, CNN Arabic corpus, Open-Source Arabic corpus (OSAc), ArCovidVac, and AlKhaleej. The evaluation results show that the classification performance strongly depends on the preprocessing technique, representation methods and classification technique, and the nature of datasets used. For the considered benchmark datasets, the linear SVC has outperformed other classifiers overall when prominent features are selected.
Social media networking is a prominent topic in real life, particularly at the current moment. The impact of comments has been investigated in several studies. Twitter, Facebook, and Instagram are just a few of the social media networks that are used to broadcast different news worldwide. In this paper, a comprehensive AI-based study is presented to automatically detect the Arabic text misogyny and sarcasm in binary and multiclass scenarios. The key of the proposed AI approach is to distinguish various topics of misogyny and sarcasm from Arabic tweets in social media networks. A comprehensive study is achieved for detecting both misogyny and sarcasm via adopting seven state-of-the-art NLP classifiers: ARABERT, PAC, LRC, RFC, LSVC, DTC, and KNNC. To fine tune, validate, and evaluate all of these techniques, two Arabic tweets datasets (i.e., misogyny and Abu Farah datasets) are used. For the experimental study, two scenarios are proposed for each case study (misogyny or sarcasm): binary and multiclass problems. For misogyny detection, the best accuracy is achieved using the AraBERT classifier with 91.0% for binary classification scenario and 89.0% for the multiclass scenario. For sarcasm detection, the best accuracy is achieved using the AraBERT as well with 88% for binary classification scenario and 77.0% for the multiclass scenario. The proposed method appears to be effective in detecting misogyny and sarcasm in social media platforms with suggesting AraBERT as a superior state-of-the-art deep learning classifier.
Blood cells carry important information that can be used to represent a person’s current state of health. The identification of different types of blood cells in a timely and precise manner is essential to cutting the infection risks that people face on a daily basis. The BCNet is an artificial intelligence (AI)-based deep learning (DL) framework that was proposed based on the capability of transfer learning with a convolutional neural network to rapidly and automatically identify the blood cells in an eight-class identification scenario: Basophil, Eosinophil, Erythroblast, Immature Granulocytes, Lymphocyte, Monocyte, Neutrophil, and Platelet. For the purpose of establishing the dependability and viability of BCNet, exhaustive experiments consisting of five-fold cross-validation tests are carried out. Using the transfer learning strategy, we conducted in-depth comprehensive experiments on the proposed BCNet’s architecture and test it with three optimizers of ADAM, RMSprop (RMSP), and stochastic gradient descent (SGD). Meanwhile, the performance of the proposed BCNet is directly compared using the same dataset with the state-of-the-art deep learning models of DensNet, ResNet, Inception, and MobileNet. When employing the different optimizers, the BCNet framework demonstrated better classification performance with ADAM and RMSP optimizers. The best evaluation performance was achieved using the RMSP optimizer in terms of 98.51% accuracy and 96.24% F1-score. Compared with the baseline model, the BCNet clearly improved the prediction accuracy performance 1.94%, 3.33%, and 1.65% using the optimizers of ADAM, RMSP, and SGD, respectively. The proposed BCNet model outperformed the AI models of DenseNet, ResNet, Inception, and MobileNet in terms of the testing time of a single blood cell image by 10.98, 4.26, 2.03, and 0.21 msec. In comparison to the most recent deep learning models, the BCNet model could be able to generate encouraging outcomes. It is essential for the advancement of healthcare facilities to have such a recognition rate improving the detection performance of the blood cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.