Transmission of IPv6 Packets over IEEE 802.15.4 Networks Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
To support network programming, we present Deluge, a reliable data dissemination protocol for propagating large data objects from one or more source nodes to many other nodes over a multihop, wireless sensor network. Deluge builds from prior work in density-aware, epidemic maintenance protocols. Using both a real-world deployment and simulation, we show that Deluge can reliably disseminate data to all nodes and characterize its overall performance. On Mica2-dot nodes, Deluge can push nearly 90 bytes/second, oneninth the maximum transmission rate of the radio supported under TinyOS. Control messages are limited to 18% of all transmissions. At scale, the protocol exposes interesting propagation dynamics only hinted at by previous dissemination work. A simple model is also derived which describes the limits of data propagation in wireless networks. Finally, we argue that the rates obtained for dissemination are inherently lower than that for single path propagation. It appears very hard to significantly improve upon the rate obtained by Deluge and we identify establishing a tight lower bound as an open problem.
The focus of surveillance missions is to acquire and verify information about enemy capabilities and positions of hostile targets. Such missions often involve a high element of risk for human personnel and require a high degree of stealthiness. Hence, the ability to deploy unmanned surveillance missions, by using wireless sensor networks, is of great practical importance for the military. Because of the energy constraints of sensor devices, such systems necessitate an energy-aware design to ensure the longevity of surveillance missions. Solutions proposed recently for this type of system show promising results through simulations. However, the simplified assumptions they make about the system in the simulator often do not hold well in practice and energy consumption is narrowly accounted for within a single protocol. In this paper, we describe the design and implementation of a running system for energy-efficient surveillance. The system allows a group of cooperating sensor devices to detect and track the positions of moving vehicles in an energyefficient and stealthy manner. We can trade off energyawareness and surveillance performance by adaptively adjusting the sensitivity of the system. We evaluate the performance on a network of 70 MICA2 motes equipped with dual-axis magnetometers. Our results show that our surveillance strategy is adaptable and achieves a significant extension of network lifetime. Finally, we share lessons learned in building such a complete running system. * This work was supported by the DAPRPA IXO offices under the NEST project (grant number F336615-01-C-1905).Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Categories and Subject Descriptors C.2.1 [Computer Communication Networks]: Network Architecture and Design General TermsDesign, Performance, Experimentation, Measurement KeywordsSensor networks, Energy conservation, Tracking, Wireless MOTIVATIONOne of the key advantages of wireless sensor networks (WSN) is their ability to bridge the gap between the physical and logical worlds, by gathering certain useful information from the physical world and communicating that information to more powerful logical devices that can process it. If the ability of the WSN is suitably harnessed, it is envisioned that WSNs can reduce or eliminate the need for human involvement in information gathering in certain civilian and military applications. In the near future, sensor devices will be produced in large quantities at a very low cost and densely deployed to improve robustness and reliability. They can be miniaturized into a cubic millimeter package (e.g., smart dust [16]) in order to be stealthy in a hostile environment. Cost and size ...
Recent technological advances and the continuing quest for greater efficiency have led to an explosion of link and network protocols for wireless sensor networks. These protocols embody very different assumptions about network stack composition and, as such, have limited interoperability. It has been suggested [3] that, in principle, wireless sensor networks would benefit from a unifying abstraction (or "narrow waist" in architectural terms), and that this abstraction should be closer to the link level than the network level. This paper takes that vague principle and turns it into practice, by proposing a specific unifying sensornet protocol (SP) that provides shared neighbor management and a message pool.The two goals of a unifying abstraction are generality and efficiency: it should be capable of running over a broad range of link-layer technologies and supporting a wide variety of network protocols, and doing so should not lead to a significant loss of efficiency. To investigate the extent to which SP meets these goals, we implemented SP (in TinyOS) on top of two very different radio technologies: B-MAC on mica2 and IEEE 802.15.4 on Telos. We also built a variety of network protocols on SP, including examples of collection routing [53], dissemination [26], and aggregation [33]. Measurements show that these protocols do not sacrifice performance through the use of our SP abstraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.