In situ observation of amorphous calcium carbonate (ACC) confined in ∼500 pL emulsion droplets allows determination of the timing of individual crystal nucleation events. Statistical analysis of events in hundreds of droplets establishes an upper limit for the steady-state nucleation rate of 1.2 cm−3 s−1 for the crystallization from ACC.
A series of Fe/Fe3C‐containing N‐doped porous carbon materials (Fe/NC) were prepared by pyrolyzing composites that contained a metal–organic framework (MIL‐88c‐Fe) with dicyandiamide. The Fe/NC obtained at 800 °C (Fe/NC800) showed comparable onset potential and kinetics to that of the commercial Pt/C catalyst in catalyzing the oxygen reduction reaction (ORR). Further measurements suggested that it has better durability and much higher methanol tolerance than Pt/C. Acid leaching was performed to reveal the critical role of Fe‐containing sites in ORR catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.