Our laboratory is interested in the genes and gene products involved in the interactions between Porphyromonas gingivalis (Pg) and the host. These interactions may occur in either the periodontal tissues or other non-oral host tissues such as those of the cardiovascular system. We have previously reported the cloning of several genes encoding hemagglutinins, surface proteins that interact with the host tissues, and are investigating their roles in the disease process. Primary among these is HagA, a very large protein with multiple functional groups that have significant sequence homology to protease genes of this species. Preliminary evidence indicates that an avirulent Salmonella typhimurium strain containing hagA is virulent in mice. These data indicate that HagA may be a key virulence factor of Pg. Additionally, we are investigating the invasion of primary human coronary artery endothelial cells (HCAEC) by Pg because of the recent epidemiological studies indicating a correlation between periodontal disease (PD) and coronary heart disease (CHD). We found that some, but not all, strains of Pg are able to invade these cells. Scanning electron microsopy of the infected HCAEC demonstrated that the invading organisms initially attached to the host cell surface as aggregates and by a "pedestal"-like structure. By transmission electronmicroscopy it could be seen that internalized bacteria were present within multimembranous compartments localized with rough endoplasmic reticulum. In addition, invasion of the HCAEC by Pg resulted in an increase in the degradation of long-lived cellular proteins. These data indicate that Pg are present within autophagosomes and may use components of the autophagic pathway as a means to survive intracellularly. However, Pg presence within autophagosomes in KB cells could not be observed or detected. It is therefore likely that Pg uses different invasive mechanisms for different host cells. This and the role of HagA in invasion is currently being investigated further.
Porphyromonas gingivalis is a periodontal pathogen that may also be involved in the pathogenesis of coronary heart disease. This microorganism has the ability to invade several cell lines. In this study, 26 different strains of P. gingivalis were tested for invasion of human umbilical vein endothelial cells and KB cells, a human oral epidermoid cell line. Abilities to invade both cell lines by an individual strain were similar, and their invasion efficiencies could be assembled into four groups: high, moderate, low and non-invasive. Of the 26 strains, only P. gingivalis AJW4 was non-invasive. Since the fimbriae are implicated as having a key role in invasion by this species, the presence of fimbriae on strain AJW4 was investigated. Using polymerase chain reaction (PCR), strain AJW4 was found to contain the fimA gene. Sequence analysis revealed it to be type IV according to the typing scheme developed by Amano et al. Further, fimA is transcribed in this strain as demonstrated by reverse transcription PCR and is expressed on the cell surface as visualized by negative staining and electron microscopy. The adherence+invasion of strain AJW4 was 38.7% of the most invasive strain (strain 381). However, the CFU ml(-1) of strain AJW4 recovered from within cells was 2.9% of strain 381. Even though strains AJW4 and W50 have the same type IV fimbriae, strain AJW4 is 8.9-fold more adhesive yet is internalized 170-fold less. These data indicate that the invasion efficiency of P. gingivalis is variable among the different strains, and that the expression of FimA is not sufficient for invasion.
Porphyromonas gingivalis is a major etiologic agent of periodontitis, a chronic inflammatory disease that ultimately results in the loss of the supporting tissues of the teeth. Previous work has demonstrated the usefulness of avirulent Salmonella enterica serovar Typhimurium strains as antigen delivery systems for protective antigens of pathogens that colonize or cross mucosal surfaces. In this study, we constructed and characterized a recombinant S. enterica serovar Typhimurium avirulent vaccine strain which expresses hemagglutinin A and carries no antibiotic resistance markers. HagA, a major virulence-associated surface protein, is a potentially useful immunogen that contains an antigenic epitope which, in humans, elicits an immune response that is protective against subsequent colonization by P. gingivalis. The hagA gene, including its promoter, was cloned into a balanced-lethal Salmonella vector and transferred to the vaccine strain. Heterologous expression of HagA was demonstrated in both Escherichia coli JM109 and S. enterica serovar Typhimurium vaccine strain 4072. The HagA epitope was present in its native configuration as determined by immunochemistry and immunoelectron microscopy. Purified recombinant HagA was recognized by sera from mice immunized with the S. enterica serovar Typhimurium vaccine strain. The HagA-specific antigen of the vaccine was also found to be recognized by serum from a periodontal patient. This vaccine strain, which expresses the functional hemagglutinin protein, induces a humoral immune response against HagA and may be useful for developing a protective vaccine against periodontal diseases associated with P. gingivalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.